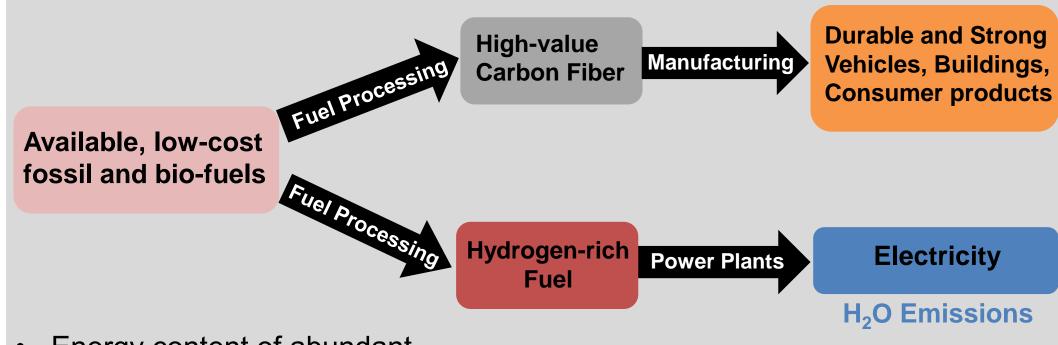
Shale Gas to Carbon Fiber - A Cleaner Pathway from Fossil Fuels to

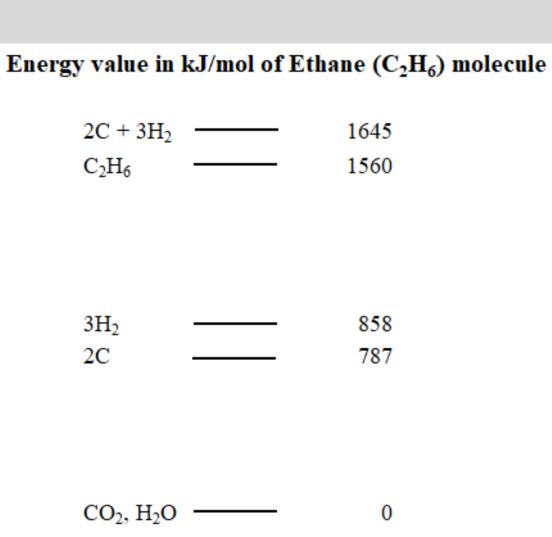
the Hydrogen-Carbon Economy

Bhumika Sule and Razi Nalim

ELEMENTAL CARBON: VFRSATII F AND VARIABI F VAI LIF

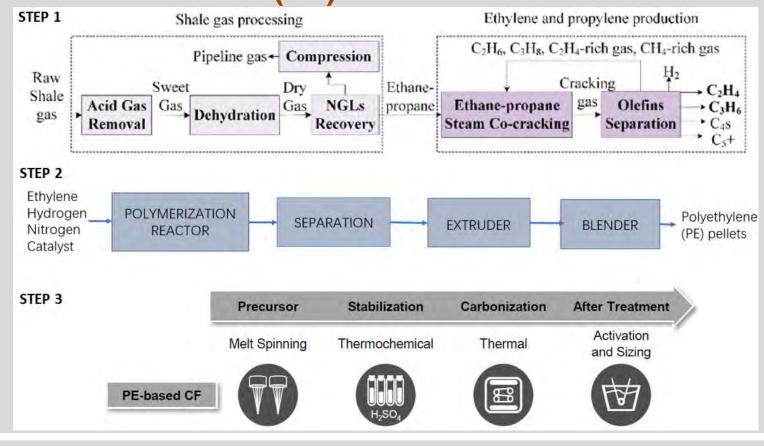

LLLWILM TAL CARBON. VLRSATILL AND VARIABLE VALUE			
Elemental carbon form (and comparables)	Bulk Price in ~US\$ per kg	Global Consumption (metric tons /year)	Global CO2 emissions from fuel combustion (metric tons /year)
Coal	\$0.04	7,900,000,000	and natural gas) combustion
Carbon black	\$1	13,200,000	
Natural graphite	\$0.9	1,100,000	
Carbon fiber ¹	\$22-30	110,000	
Graphene	\$100,000	~20,000	
C nanotubes	\$400,000	2,300	
Diamond ½ carat	\$7,000,000	~20	
Steel	\$0.6	1,800,000,000	
Natural gas	\$0.2	3,000,000,000	
Crude oil	\$0.4	4,000,000,000	

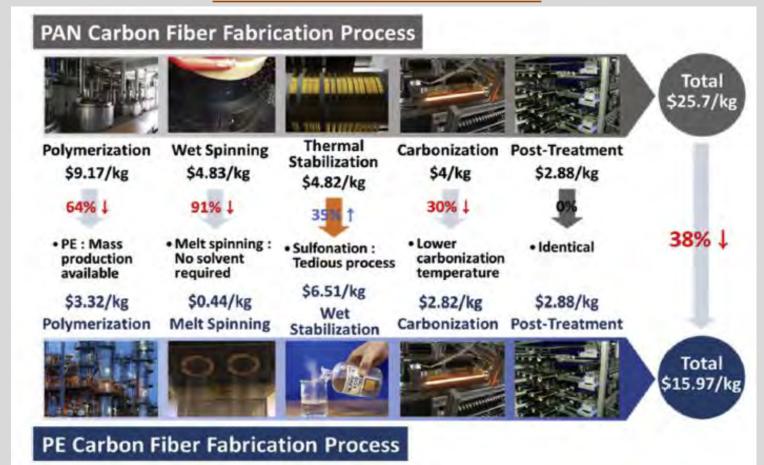
Great potential to expand market for structural materials based on Carbon Fibers (CFs) to replace steel and aluminum for large-volume applications



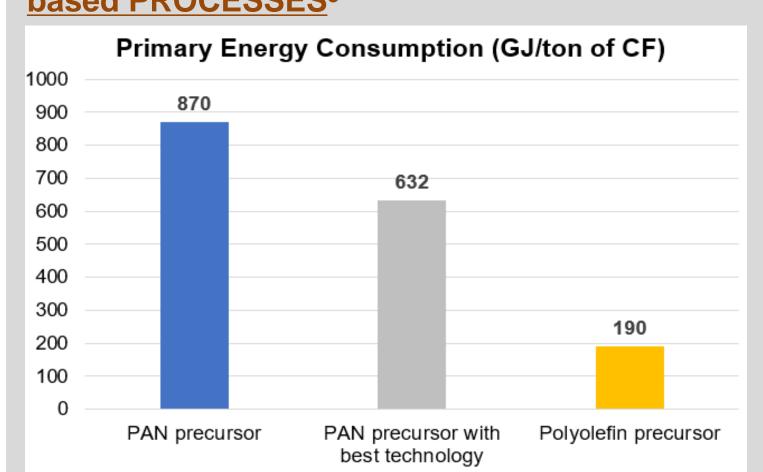
Carbon fiber filament compared to a human hair²

CARBON is too valuable to oxidize CARBON is too dangerous when oxidized The Hydrogen – Carbon Economy


- Energy content of abundant gaseous fuels (natural gas/shale gas) is shared by its hydrogen and carbon constituents
- Ideally, ~50% of the energy of hydrocarbon feedstocks can be converted to H₂, sequestering C as high-value carbon products, minimizing CO₂ emissions
- CO₂, like H₂O has no useful energy content
- Capturing and converting CO₂ to fuel or something useful takes more energy than obtained by burning C
- **Stop burning CARBON**


POLYETHYLENE AS CARBON FIBER PRECURSOR

- PE Low price and abundant supply
- PE is ~\$0.6/lb compared to ~\$5/lb for PAN precursor
- Carbon content of PE is ~86% and exhibits high carbonization yield of ~70% after sulfonation⁵


SHALE GAS → ETHANE → ETHYLENE → POLYETHYLENE(PE) → CARBON FIBER

CF COST WITH PE vs PAN, AT CURRENT PRODUCTION RATES⁶

ENERGY INTENSITIES of PAN-based AND PEbased PROCESSES³

IUPUI

SCHOOL OF ENGINEERING AND TECHNOLOGY

INDIANA UNIVERSITY-PURDUE UNIVERSITY Indianapolis

CARBON FIBER PROPERTIES AND APPLICATIONS

- Exceptional properties as a lightweight structural material
 - High tensile strength, High tensile modulus
 - Low density
 - High temperature tolerance
 - High chemical/corrosion resistance
- Tensile specific strength ~2.5 MN-m/kg (30 x

Rest of Carbon Fiber Market* 19.5 million lbs *Rest of market includes civil infrastructure, consumer goods, medical and prosthetic devices, tooling, and other

Carbon fiber market in USA in 2010³

2.2 million lbs

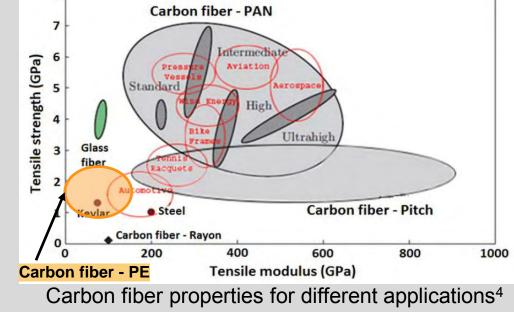
Wind energy

9.9 million lbs

Aerospace

Pressure Vessels

1.7 million lbs


6.6 million 1b

reduced: Automotive, Infrastructure, buildings, machines

CF PROPERTIES WITH PRECURSOR VARIATION

- **PRECURSORS Petroleum-derived** polyacrylonitrile (PAN), rayon from regenerated wood cellulose, petroleum pitch
- Greater than 90% CF annual production is PAN-based due to high fiber quality

Automotive CF requirements could be met with cheaper precursors

CHALLENGES IN PRODUCTION OF PE-based CARBON FIBER

- High temperature sulfonation process Generates toxic SOx fumes
- PE-based CF has inferior properties as compared to PAN-based CF
 - Not suitable for aerospace or pressure vessel applications
 - CF with high tensile strength (~4900 MPa) and moderate modulus (~230 GPa) is required for pressure vessel applications⁷
- Would be adequate for automotive, construction, other structural applications
- Better design processes required for developing stronger fibers from PE

CONCLUSIONS

- High potential for vastly expanded structural use of CFs in automotive, buildings, infrastructure
- Limited by expense of processes and polymer precursors
- Economic viability of use of PE precursors for CFs is helped by shale gas as an abundant fuel
- Energy intensity for the processes can be reduced by improving process efficiencies and waste energy recovery, use of recycled carbon fiber
- Low weight and high tensile specific strength of CFs would provide net benefit in lifecycle energy use and reduced CO₂ emissions for aircrafts, automobiles
- R&D of PE-based CFs Potential for a revolution in manufacturing due to the availability of low-cost, light-weight and immensely strong structural material for large volume applications which can also sequester carbon in valuable form

REFERENCES

[1] C. D. Warren, "Carbon Fiber Precursors and Conversion", presentation by Oak Ridge National Laboratory (ORNL) [2] Liu et al., Polymers 2015,7, 2078-2099

[3] Energetics Incorporated: Bandwidth Study on Energy Use and Potential Energy Saving Opportunities in the Manufacturing of Lightweight Materials: Carbon Fiber Reinforced Polymer Composites, Sept 2017

[4] Adapted from Chung et al., DOE FCTO Annual Progress Report 2018

[5] Liu & Kumar, Polymer Reviews, 52(3), 2012, 234-258 [6] Choi et al., Carbon 142, 2019, 610-649

[7] DOE Office of Energy Efficiency and Renewable Energy, H2@Scale New Markets FOA, DE-FOA-0002229