Course name	ECE 56900 Introduction To Robotic Systems
Credit and contact	(3 cr.) Class 3
hours	
Course	Sarah Koskie
coordinator's name	
Textbook	M. Spong, S. Hutchinson, M. Vidyasagar, <i>Robot Modeling and</i>
	Control, Wiley 2005. ISBN: 9780471649908
Course information	ECE 56900 Introduction to Robotic Systems (3 cr.) P: ECE 38200 or Graduate Standing. Class 3. Basic components of robotic systems; selection of coordinate frames; homogeneous transformations; solutions to kinematics of manipulator arms; velocity and force/torque relations; dynamic equations using Euler- Lagrange formulation; digital simulation of manipulator motion; motion planning; obstacle avoidance; controller design using torque method; and classical controllers for manipulators. Lab experiments and final project required.
	 Prerequisites/ Co-Requisite P or C: ECE 38200 or equivalent, and any high-level programming languages or graduate standing Required, Elective, or Selected Elective: EE Elective, CE Elective
Goals for the course	Upon successful completion of the course, students should be able to
	 Define the coordinates and the corresponding kinematic parameters for robotic manipulators. [1] Solve forward and inverse kinematic equations. [1]
	3. Analyze robotic motion using the concepts of Jacobian matrix. [1]
	4. Drive robot dynamic model using Lagrange's equations of motion.
	[1]5. Design robot motion trajectories to meet the design specifications
	and requirements. [1, 2]
	6. Analyze and design simple robot control systems using classical
	control design methods. [1]
	7. Evaluate and test the system performance using computer-aided
	tools. [6]
	8. Program industrial robots to perform pre-specified tasks. [6]
List of topics to be	1. Introduction: robotics and automation, mechatronics, and
covered	applications. (1 class) 0.5
	2. Fundamentals of robot technology. (2 classes) 1.0
	control systems, and affector, performance specifications, etc.)
	3 Kinematics: spatial description, homogeneous transformations, (2)
	classes) 10
	4 Kinematics: D-H representation and transformation matrices (2
	r. Encination D-11 representation and transformation matrices. (2 classes) 10
	5. Inverse kinematics: solvability and solutions. (2 classes) 1.0

	6. Differential motions and robot Jacobian. (2	
	classes)	
	1.0	
	7. Robot programming languages. (1 classes)	0.5
	8. Path/Trajectory planning. (2 classes)	1.0
	9. Robot dynamics: Euler-Lagrange formulation. (3 classes)	1.5
	10. Robot actuators. (2 classes)	1.0
	11. Sensors and instrumentation. (2 classes)	1.0
	12. Robot control: concepts, classical control design techniques. (3	
	classes)	1.5
	13. Robot control: computed torque technique. (1 classes)	0.5
	14. Machine vision: introduction. (3 classes)	1.5
	Exams (2.0 classes and final exam period)	
Syllabi approved by	Sarah Koskie	
Date of approval	08/20/2019	