Course Name:	ECE 54400 Introduction to Digital Communications
Credit and contact hours:	(3 cr.) Class 3
Course coordinator's name	Lauren Christopher
Textbook	Simon Haykin Digital Communication Systems: First Edition. Wiley 2013, ISBN 978-0471647355
	Other reference texts: <i>Michael Pursley</i> , Introduction to Digital Communications, <i>Prentice Hall</i> 2004. ISBN 9780201184938
Course Information	 ECE 54400 Digital Communications (3 cr.) P: ECE 44000 or Graduate Standing. Class 3. Introduction to digital communication systems and spread spectrum communications. Analog message digitization, signal space representation of digital signals, binary and M-ary signaling methods, detection of binary and M-ary signals, comparison of digital communication systems in terms of signal energy and signal bandwidth requirements. The principal types of spread- spectrum systems are analyzed and compared. Application of spread spectrum to multiple-access systems and to secure communication systems is discussed. Prerequisites/ CoRequisite P: ECE 44000 or graduate standing Indicate whether a required, elective, or selected elective course in the program
Goals for the course	 Upon successful completion of the course, students should be able to Determine the frequency content of any signal, that is, the student should be capable of obtaining the signal's Fourier series and/or its Fourier Transform. [1] Determine the low pass equivalent or a given narrowband bandpass signal. [1] Determine whether a mathematical representation of a signal is a PAM, a PPM signal, a PFM, a QAM, a simplex FM signal, or a multidimensional signal. [1] Determine the signal space representation of a PAM, a PPM signal, a PFM, a QAM, a simplex FM signal, a PFM, a QAM, a simplex FM signal, a PFM, a QAM, a simplex FM signal, and a multidimensional signal. [1] Determine whether a visual representation of the signal space representation is that of a PAM, a PPM signal, a PFM, a QAM, a simplex FM signal, a PFM, a QAM, a simplex FM signal. [6] Determine the appropriate matched filter after determining

	the nature of the signal to be demodulated. [1, 2]
	7. Given the mathematical representation of a modulated
	signal, determine the power spectrum. [1]
	8. Given the visual representation of a modulated signal
	and/or of its signal space representation, determine its
	power spectrum after determining the nature of a modulated
	signal. [1, 6]
	9. Determine the probability of error committed by a decoder
	given the probability distribution of the corrupting noise
	and the a priori probabilities of the signal for a given ASK,
	PSK, or FSK signal. [1]
	10. Determine the Signal-to-Noise ratio of the output of the
	demodulator when the modulated signal has been corrupted
	by additive noise. [1]
	11. Design signal pulses for bandlimited channels. [1]
	12. Choosing modulation codes for spectrum shaping. [1, 2]
List of topics to be covered	1. Overview Elements of a Digital Communication System (1
	class)
	2. Representation of Bandpass Signals and Systems (3 classes)
	3. Signal Space Representation (2 classes)
	4. Representation of Digitally Modulated Signals (4 classes)
	5. Power Spectra of Digitally Modulated Signals (2 classes)
	6. Optimum Receivers for Signals Corrupted by AWGN (4
	classes)
	/. Performance of Optimum Receivers for Memoryless
	Modulation (2 classes)
	8. Nonconferent Demodulation (2 classes)
	9. Signal Design for Communication I nrough Bandhmiled
	10 Introduction to Spread Spectrum Communications (A classes)
	10. Introduction to Spread Spectrum Communications (4 classes)
Syllahi Annroved by	Lauren Christonher
Synabl Approved by	