Course name	ECE 53900 Foundations of Adv. Engineering I
Credit and contact hours	(3 cr.) Class 3
Course coordinator's name	Sarah Koskie
Textbook	None
Course information	 ECE 59500 Foundations of Adv. Engineering I. P:ECE 27000 and ECE 30200 or graduate standing. Several mathematical tools applied in the engineering discipline are discussed. Statistical methods, including construction of confidence interval and hypothesis testing, as well as regression and regression analysis, are discussed. Discrete tools are discussed; these include logic and mathematical reasoning, combinatorics, groups and finite fields. Applications of some of these tools in engineering problems are introduced. Decision Theory including Bayes Theorem, applying Bayes Theorem to form decision, utility function, expectation of utility, loss function and risk, applying regression to estimate loss Prerequisites/ Co-Requisite ECE 27000 and ECE 30200 or graduate standing Required, Elective, or Selected Elective: EE Elective, CE Elective
Goals for the course	 Upon successful completion of the course, students should be able to Solve advanced combinatorics and counting problems that occur in Engineering and Computing fields. [1, 6] Analyze logic and theoretical statements and hypothesis. Construct and design mathematical proofs. [1, 6] Apply finite fields to construct liner error correction codes. [1] Compute confidence intervals to estimate population mean and variances. [1, 6] Analyze and design statistical test, apply test to determine validity of hypothesis. [1, 6] Model and construct Bayesian decision problems. [1, 6] Utilize Decision trees and Bayes Theorem to solve decision problems [1, 6]
List of topics to be covered	 problems. [1, 0] Combinatorics, Counting, Recurrence Relations, Relations Logic, Mathematical Reasoning, Mathematical Induction, Construction of Proofs, Recursive Definitions Groups, Polynomials, Finite Fields, Coding Theory and other engineering applications of fields and groups

	4. Review Central Limit Theorem, Normal Distribution,
	Student's t-distribution
	5. Confidence Intervals for large and small sample sizes,
	Selecting Sample Size, Hypothesis Testing
	6. Chi-squared Distribution, F-distribution for variance,
	Confidence Intervals for variance, Hypothesis Testing
	7. Least squares, Regression, and Inferences
	8. Decision theory introduction – basics
	9. Bayesian Probability and applications to decision theory
	10. Decision Trees, Utility Functions and Expected Utility, Loss
	Functions and Risk, Posterior Probability
	11. Decision Theory and Hypothesis Testing
	12. Using Regression for Inference
	13. Two tests and one final exam, quizzes and homework
Syllabi approved by	Brian King
Date of approval	08/20/2019