Course name	ECE 52702 Advanced Power Electronics Converters
Credit and contact hours	(3 cr.) Class 3
Course coordinator's name	Euzeli Dos Santos
Textbook	E. C. dos Santos, E. R. da Silva, <i>Advanced Power Electronics</i> <i>Converters: PWM Converters Processing AC Voltage</i> , Wiley 2014, ISBN 9781118880944, 384 pages, Wiley-IEEE Press
Course information	ECE 52702 Advanced Power Electronics Converters (3 cr.) P: ECE 20200, ECE 42700 Class 3. This course introduces students to advanced power electronics converters dealing with ac voltage. The power electronics topologies considered in this course are sorted into two groups: a) neutral-point-clamped, b) cascase, c) flying capacitor, and d) non-conventional multilevel configurations. The back-to-back converters presented are: a) three-phase to three-phase, b) single-phase to three-phase, c) single-phase to single-phase ac-dc-ac converters. A new methodology will be employed to present comprehensively multilevel and back-to-back converters topologies. The main applications of those converters are in renewable energy systems, active power filters, energy efficiency devices and motor drive systems.
	 Prerequisites/ Co-Requisite ECE 20200 and ECE 42700 or graduate standing Required, Elective, or Selected Elective: EE Elective, CE Elective
Goals for the course	Upon successful completion of the course, students should be
	 able to Describe the operation of the main multi-level and ac-dc-ac converters. [1, 2,6] Develop PWM and linear control for multi-level and ac-dc-ac converters. [1, 2, 1,6] Design and specify multi-level and back-to-back converters. [1, 2,1, 6] Develop non-conventional power electronics topologies for applications in renewable energy systems and power quality device. [1, 1, 2,6]
6List of topics to be covered	 Introduction, History, Trends, and Applications of power converters Power Devices and basic power converters Introduction of the power converters
	 Introduction to PBG (Power-Block-Geometry) methodology Application of PBG in Multilevel Configurations Neutral-Point-Clamped Configuration Cascade Configuration Flying Capacitor Configuration Non-Conventional Multilevel Configurations Students' Seminar Application of PBG in ac-dc-ac Configuration

	11. PWM and Feedback Control Strategies
	12. Three-phase to Three-phase Configuration
	13. Single-phase to Three-phase Configuration
	14. Single-phase to Single-phase Configuration
	15. Applications of multilevel converters in renewable energy system
	16. Dc-ac and ac-dc Converters
	17. Applications of ac-dc-ac converters in power quality devices
	(active power filters)
	18. Students' Project
Syllabi approved by	Euzeli Dos Santos
Date of approval	12/03/2021