Course name	ECE 42700 Power Electronics
Credit and contact hours	(3 cr.) Class 3
Course coordinator's name	Euzeli dos Santos
Textbook	A Hundred Solved Problems in Power Electronics
	ISBN# 9781508450139, Euzeli C. dos Santos Jr., Gregory Carlos , 2015.
Course information	ECE 42700 Power Electronics (3 cr.) P: ECE 25500. Class 3. Introduction to the fundamental operating principles of power conditioning circuits that are currently being used to effect power flow from ac to dc and vice versa. Emphasis is on the relationship between form and function of these circuits. Circuits discussed will include ac/dc line-commutated converters, dc/dc converters, dc/variable frequency converters, resonant converters and ac/ac converts. Computer simulations will be used as part of the course work.
	Prerequisites/ Co-Requisite ECE 25500 or equivalent
	Required, Elective, or Selected Elective: EE Elective, CE Elective
Goals for the course	 Upon successful completion of the course, students should be able to 1. An understanding of the relationships between form and function and the roles played by various circuit components in ac/dc, dc/dc, and dc/ac converters. [1, 4;1, 2, 6] 2. Knowledge of the basic characteristics of switch types, and classification of converters. [1, 3;1, 1, 2,6] 3. Knowledge of control and switching techniques, and operating principles of ac/dc, dc/dc, and dc/ac converters. [1, 4;1, 2,6] 4. Knowledge of the methods of sizing the switching and energy storage elements in ac/dc, dc/dc, and dc/ac
List of topics to be covered	 Introduction to the fields of application Characterization of switch types and classification of inverters Ac/dc line-commutated converters: - time domain analysis of a half-wave rectifier circuit, current commutation, measures and effects of distortion (2) - bridge and polyphase rectifier circuits (3) - phase control, rectifier and inverter operations (3) Dc/dc converters: - topologies, basic switch arrangement, converter connections with and without direct dc path, step-down and step-up converters, ripple frequency

	model, sizing of the L's and C's, device stresses (6) -
	transformer coupling for isolation and level change:
	single- and double-ended isolated converters, flyback
	converter, effect of leakage inductance (4)
	5. Dc/variable frequency ac converters: - voltage- and
	current-source inverters, harmonic reduction, pulse width
	modulation, transformer-coupled converters, three-phase
	converters
	6. Resonant converters: - voltage-source series converters,
	modified topologies dc/dc converters
	7. Practical considerations: - gate and base drives to
	transistors and thyristors, types of commutation circuits,
	snubbing, thermal considerations (1) - Magnetics: design
	of inductors and transformers (3) - filtering requirements
	(4) - laboratory demonstrations (2)
Syllabi approved by	Euzeli dos Santos
Date of approval	12/03/2021