| Course name | ECE 30500 Semiconductor Devices |
| :---: | :---: |
| Credit and contact hours | (3 cr.) Class 3 |
| Course coordinator's name | Peter Schubert |
| Textbook | Robert F. Pierret, Semiconductor Device Fundamentals, Prentice Hall, 1996. ISBN:9780201543933 |
| Course information | ECE 30500 Semiconductor Devices (3 cr.) P: ECE 25500, MATH 26600, and PHYS 25100. Class 3. Materials- and phenomena-based examination of devices, emphasizing the how and why of solid-state device operation. <br> Prerequisites/ Co-Requisite <br> P: ECE 25500, MATH 26200, PHYS 25100 <br> Required, Elective, or Selected Elective: <br> EE Elective, CE Elective |
| Goals for the course | Upon successful completion of the course, students should be able to <br> 1. Solve problems of atom spacing for simple, $\mathrm{bcc}, \mathrm{fcc}$, and diamond structures. [1] <br> 2. Determine the carrier distribution from the density of states and the Fermi function. [1] <br> 3. Calculate minority and majority carriers from charge neutralization relationship and np product relationship. [1] <br> 4. Describe the various carrier actions including diffusion, drift, recombination and generation. [1] <br> 5. Model the semiconductor materials in energy band diagram and find physical meanings of potential difference and energy on the diagram. [1,6] <br> 6. Describe the various IC processes required for fabricating a device on a silicon wafer. [2] <br> 7. Determine the electrostatic, dynamic, and transient performances of a PN junction. [1] <br> 8. Construct the I-V characteristics of a P-N junction diode using diffusion and R-G center current components. [1] <br> 9. Design a p-n junction for a given reverse saturation current. [2] <br> 10. Determine the effect of high current, high frequency of the PN junction diode characteristics and parameters. [1] <br> 11. Design photodiodes for high frequency operation using PiN, and compare between Avalanche Photodiodes with PiN in terms of $\mathrm{S} / \mathrm{N}$ ratio. [1] <br> 12. Determine the conditions on forming compound semiconductors of compound substrate materials that are suitable for LEDs. [1] |


|  | 13. Determine the electrostatic, dynamic, and transient performances of a PNP/NPN BJTs. [1] <br> 14. Describe the physics behind base width modulation and punch-through. [1] <br> 15. Determine the effect of dc collector current on dc current gain of a BJT. [1] <br> 16. Explain and apply theories of the PNPN device characteristics and means of their firing using SCS and UJT devices. [1, 6] <br> 17. Apply MS Schottky diodes to BJT for high speed operation to design of MOSFET. $[1,6]$ <br> 18. Determine the dc and ac characteristics for JFET and MOSFET. [1] <br> 19. Obtain a general expression for the threshold voltage of a MOSFET device including ion implantation and body effect. [1] |
| :---: | :---: |
| List of topics to be covered | 1. Semiconductor materials and models (2 classes) <br> 2. Carrier properties and statistics (3 classes) <br> 3. Carrier action: drift, diffusion and recombinationgeneration ( 5 classes) <br> 4. PN junction fabrication; electrostatics (3 classes) <br> 5. Ideal diode I-V characteristics (1 class) <br> 6. Derivation of ideal diode equation (3 classes) <br> 7. Deviations from ideal behavior: avalanche, Zener and tunnel diodes (1 class) <br> 8. Bipolar junction transistors (6 classes) <br> 9. Field effect transistors (2 classes) <br> 10. MOS structure, electrostatics (2 classes) <br> 11. MOSFET devices (2 classes) |
| Syllabi approved by | Maher Rizkalla |
| Date of approval | 04/10/2021 |

