Required Course:	ECE 27000 Digital Logic Design
Credit and contact hours:	(4 cr.) Class 3, Lab 3
2014-16 IUPUI Campus	ECE 27000 Digital Logic Design (4 cr.) P: or C: ECE 20100 and
Bulletin description:	knowledge of electrical circuits. Class 3, Lab 3. Introduction to logic
	design, with emphasis on practical design techniques and circuit
	implementation. Topics include Boolean algebra; theory of logic
	functions; mapping techniques and function minimization; hardware
	description language; logic equivalent circuits and symbol
	transformations; electrical characteristics; propagation delays; signed
	number notations and arithmetic; binary and decimal arithmetic logic
	circuits; theory of sequential circuits; timing diagrams; analysis and
	synthesis of SR-, D-, T-, and JK-based sequential circuits; clock
	generation circuits; algorithmic state machine method of designing
	sequential circuits. A series of logic circuit experiments using CMOS
	integrated circuits for combination of logic and sequential circuits.
Prerequisite or corequisite:	P or C: ECE 201
Prerequisites by topic:	Basic linear circuit theory.
Textbook:	Charles H. Roth, Jr. and Larry L. Kinney, "Fundamentals of Logic
	Design", Seventh Edition, 2014, Cengage, ISBN 1133628478
Coordinator:	Seemein Shayesteh, Lecturer of Electrical and Computer Engineering
Goals:	To give the engineering student an introduction to digital devices and
	their applications; to provide instruction in methods of design of digital
	circuits and systems.
Outcomes:	Upon successful completion of the course, students should be able to
	1. Derive a Boolean expression for a digital circuit. [b, e]
	2. Design a digital circuit given the input, output and description of
	the system. $[c, e, k]$
	3. Design sequential logic and combinational logic digital circuits.
	[D]
	4. Design digital circuits using various digital logic building blocks
	5 Derive a finite state machine implement it and optimize it given
	3. Derive a finite state machine, implement it and optimize it given
	6 Beverse engineer a digital circuit. That is given a digital circuit
	design be able to determine functionality [h e]
	design, be able to determine functionality. [0, 0]
Topics:	1 Introduction: CMOS switches numbers binary arithmetic ICs
- opiesi	(1 class)
	2. Logic operations: truth tables: logic gates. (3 classes)
	3. Boolean algebra and canonical forms. (2 classes)
	4. K-maps; minimization of logic functions. (3 classes)
	5. Multilevel combinational logic. (1 class)
	6. Multiplexers, demultiplexers. (1 class)
	7. Time response and hazards. (1 class)
	8. Programmable logic. (1 class)
	9. Tri-state and open collector gates; combinational logic case
	study. (2 classes)
	10. Latches and Flip-Flops (2 classes)
	11. Finite state machines, implementation and optimization (4

	classes)
	12. Arithmetic Unit: Adders/subtractors/multipliers. (2 classes)
	13. Exams/Quizzes. (3 classes)
	14. Final exam. (final exam period)
Computer usage:	PC
Evaluation methods:	3 exams/quizzes, homework, 8 or 9 laboratory reports, and final
	comprehensive exam.
Laboratory projects:	1. Logic Circuit
	2. Boolean algebra
	3. Multi-level Combinational Logic
	4. MUX, Decoder and PLA/ROM
	5. Multi-level Combinational Logic
	6. Latch and Flip Flop
	7. Programmable Logic Device
	8. Finite State Machine
	9. Final Design Project
ABET category:	Engineering science 50%, engineering design 50%.
Prepared by:	Lauren Christopher, John Lee
Date:	July 22, 2014