
Sorting Ransomware from Malware Utilizing Machine Learning
Methods with Dynamic Analysis

Joshua Schoenbachler∗
jjschoen@iu.edu

Indiana University - Purdue University Indianapolis
Indianapolis, Indiana, USA

Vinay Krishnan∗
vinayek2@illinois.edu

University of Illinois Urbana-Champaign
Urbana, Illinois, USA

Garvit Agarwal
gagarwa@iu.edu

Indiana University - Purdue University Indianapolis
Indianapolis, Indiana, USA

Feng Li
fengli@iupui.edu

Indiana University - Purdue University Indianapolis
Indianapolis, Indiana, USA

ABSTRACT
Ransomware attacks have grown significantly in the past dozen
years and have disrupted businesses that engage with personal data.
In this paper, we discuss the identification of ransomware, malware,
and benign software from one another using machine learning tech-
niques. We collected data samples from repositories on the internet
as well as using a dataset from a previous study that provided a
basis for our approach. We also collected ransomware, malware,
and benign software samples manually from Cuckoo Sandbox™.
We also filtered on certain feature groups to test to see if certain
activity/processes in the infection process could be used to correctly
distinguish ransomware from malware and benign software. These
feature groups represent correlated processes within a running ap-
plication: network activity, PROC memory activity, registry/events
processes, and file interactions. The datasets were analyzed using
several ML models which included Random Forest, SVM, Gradi-
ent Boosting, and Decision Trees using binary classification. The
best classifiers for distinctly identifying ransomware from benign
software were Random Forest and SVC with an F1- score of 86%
and an F1-score of 82% as well as an 85% in overall accuracy for
Random Forest. In addition to ransomware versus benign software,
we also compared malware software to ransomware data. Yielding
a 100% accuracy in performance, Gradient Boosting Classifier and
Decision Trees were the best at distinguishing ransomware from
malware software. This high result may partially be caused by a
smaller malware and ransomware dataset. Overall, we were able
to successfully distinguish ransomware from malware and benign
software.

∗Both authors contributed equally to this research.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ACM MobiHoc ’23, October 23–26, 2023„ Washington D.C., MD
© 2023 Association for Computing Machinery.
ACM ISBN 978-1-4503-XXXX-X/18/06. . . $15.00
https://doi.org/XXXXXXX.XXXXXXX

CCS CONCEPTS
• Computer systems organization → Embedded systems; Re-
dundancy; Robotics; • Networks→ Network reliability.

KEYWORDS
Dynamic Analysis, Malware, Ransomware, Benignware, Cuckoo
Sandbox, Graph Learning, Machine Learning, Neural Networks
ACM Reference Format:
Joshua Schoenbachler, Vinay Krishnan, Garvit Agarwal, and Feng Li. 2023.
Sorting Ransomware from Malware Utilizing Machine Learning Methods
with Dynamic Analysis. In Proceedings of Make sure to enter the correct
conference title from your rights confirmation emai (ACMMobiHoc ’23). ACM,
New York, NY, USA, 7 pages. https://doi.org/XXXXXXX.XXXXXXX

1 INTRODUCTION
Currently, malware and ransomware-based detection systems have
utilized static and dynamic analysis methodologies to collect infor-
mation on generalized malware and ransomware behavior. Static
analysis methods have focused on anti-malware systems to check
files against known and common “malicious” signatures. Static
analysis methods may have limitations as new or obfuscated files
may not be detected, as a signature may not exist. . . As malware
continues to evolve and becomes more pervasive, static analysis
methods have become less effective, and security researchers have
shifted their focus to dynamic detection methods to better prevent
malware attacks. By using a wide range of features, we have been
able to detect and cluster new or obfuscated malicious files unlike
the previous static systems.

In the past, researchers tended to focus on either detecting mal-
ware or ransomware. However, a real-time system would be more
effective in a production environment, if it is able to detect and
differentiate malware and ransomware from benign applications.
Security professionals and anti-malware services will need to react
to ransomware differently relative to other malicious attacks. It
is necessary to distinguish ransomware from other malicious at-
tacks to prevent disruption in business systems and stifle revenue
streams.

In this paper, the focus is on dynamic analysis using features
collected from a Cuckoo Sandbox™ environment. This is an isolated
system in which files are run to detect API calls, assess howmemory
and storage is analyzed, and determine how the computer network
capabilities are utilized. Using previous techniques developed by

https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX

ACM MobiHoc ’23, October 23–26, 2023„ Washington D.C., MD Schoenbachler and Krishnan, et al.

Hernández-Álvarez et. al. [1] the number of important sandbox data
features was reduced to 50 critical features. Reducing the number of
features allowed for rapid and efficient analysis of the files without
compromising test scores.

This paper also addresses the process of retrieving and analyzing
the 50 features collected from the cuckoo analyses, along with
how the machine learning algorithms were developed and tested to
differentiate and separate general malicious files from ransomware
files. The unique aspect of this research is to underscore the utility
of dynamic models and to identify and validate minimal features
evident in the signature of suspicious ransomware to proactively
reduce the impact caused by these malicious software.

2 RELATEDWORKS
Earlier research leverages methods utilizing a dynamic analysis
and machine learning-based approach to extract features that gen-
eralize the overall behaviors of ransomware activity. The study by
Hernández-Álvarez et. al. [1], utilizes diverse ransomware-affected
samples to detect variant threats. They classify Locker, Encryptor,
and Goodware samples. The final dataset accumulates up to 2000
samples in entry with 50 characteristics extracted.

A survey paper by U Urooj et. al. [5] discusses the contextual
background of ransomware-based research. This paper provides
the history of ransomware research and an overview of different
approaches researchers have utilized to analyze ransomware and
machine learning techniques to further classify ransomware. This
paper also focuses on the significance of dynamic analysis as a tool
for ransomware detection.

U. Zahoora et. al. [7] focuses on methods to counter zero day
ransomware attacks which are the most unpredictable in behavior
because they are unseen in data prediction. A Pareto Ensemble
Classifier was used to counter against zero day. This method utilizes
a Contractive AutoEncoder to define a core semantic feature space.
To learn these features, the Pareto Ensemble Classifier technique is
used as a way to learn various feature spaces. The proposed Pareto
Ensemble Classifier technique is proven to be very effective when
performing against zero day ransomware attacks.

Many studies have utilized graph learning techniques for classifi-
cation on dynamic graphs. A. Pareja et. al. proposed [4] a graph con-
volution network model along the temporal dimension to capture
dynamism of a graph sequence using a recurrent neural network
architecture to evolve GCN parameters. This proposed method was
coined as EvolveGCN™. Such an advanced graph learning tech-
nique was primarily utilized for link prediction, node classification,
and edge classification tasks.

Graph learning techniques and malware detection systems were
combined to create a much more robust and faster learning model
to increase accuracy in classification. S Li et. al. [2] combines both
methods to increase malware detection performance. A malware
detection based classifier on a graph convolutional network(GCN)
was used to adapt to various malware characteristics by utilizing
an API call sequence into a directed graph. The individual nodes
represent the APIs and edge connections represent the API invokes.
The weight of each graph represents the number of times each API
sequence was called. The graph was read as an adjacency matrix,
where the rows represent the API, started and the columns refer to

the API called. The weight of the matrix is stored in the cell of the
matrix. The resulting GCN framework yielded a 98.32

Z Zhang et. al. [8] relies on another graph learning method by
focusing on the Dynamic Evolving Graph Convolutional Network
(DEGCN) model to capture dynamic evolving patterns of both local
API level and global graph level software behaviors. Essentially, a
graph is generated to feature different time slots based on an API
segment window which are run multiple times to eventually detect
whether certain software is malicious or benign. This study involves
a Graph-encoding-based Gate Recurrent Unit (GGRU) network to
capture the graph level evolving features which include the nodes,
edges, and their attributes.

3 METHODS
3.1 Datasets
3.1.1 Dataset One - 50 Features Dataset. Utilized a 2000 sample
dataset that distinguished between Ransomware and Goodware.
Families of ransomware were not explicitly given and 50 features
were extracted from a JSON file through a sandboxed based envi-
ronment [1].

3.1.2 Dataset Two - Collected Dataset for Ransomware, Malware,
and Benign Software. 257 sampled dataset were collected from the
Cuckoo Sandbox™ environment. Fifty features were extracted and
tested for Ransomware (57), Malware (120), and Benign software
(80) samples accordingly. Families of Ransomware were specified
in the data collection.

3.2 Using Cuckoo Sandbox™
The initial dataset was collected by running software samples
within the Cuckoo Sandbox™ environment. To initiate the cuckoo
sandbox™ installation, an Ubuntu Linux machine was utilized as
the foundation. Then VirtualBox was installed along with other
required software for the Cuckoo Sandbox version 2.0.7. Next, we
installed Cuckoo Sandbox™ and set up the virtual machine. For
the testing environment, Windows 7 was utilized with modifica-
tions to make it more vulnerable. Python 2 was installed to run the
files. Once the Cuckoo Sandbox™ was configured the files could
be run in Python. The internet was scoured to find malicious and
benign software. Several repositories were identified that aided our
research. First was the Zoo [6], a popular malware and ransomware
github project that hosts both general malware and ransomware
samples. The second repository was NTFS123’s MalwareDatabase
[3]. This repository is almost identical to theZoo, but has some
variations in samples. Using these two repositories we were able to
procure enough samples to generate our dataset, Dataset 2.

3.3 Feature Extraction
After running the cuckoo samples, python programming interface
[1] was utilized to extract 50 features from each malware sample.
These features were selected based on certain characteristics of
a program that were affected in the infection process while the
malware was running. The selected features were extracted from a
JSON report contained within the cuckoo report that was generated
after a sample was run. The python program generated a GUI tool
that presented the 50 final features as a list of checkboxes. As

Sorting Ransomware from Malware Utilizing Machine Learning Methods with Dynamic Analysis ACM MobiHoc ’23, October 23–26, 2023„ Washington D.C., MD

a result, certain features could be filtered out that were related
to specific processes such as network activity, registry /events,
file processes, etc. After each extraction was complete, a .csv for
each malware sample was generated displaying information on
the features selected. The headers represented the features and the
number associated with each header represented the number of
occurrences of each process during the malware analysis. A total
of 257 samples were run consisting of Malware, Ransomware, and
Goodware. Each sample representing a .csv file was generated. All
.csv files were combined into one to represent a dataset set for
machine learning analysis. This dataset represented Dataset Two.
We also utilized a GitHub repository [1] to serve as a training set
for both Benign Software versus Ransomware analysis which is
represented as Dataset one.

3.4 Feature Analysis
After converting our JSON files into .csv programs, all samples were
analyzed by each feature through scatter plot graphs. We started
with a large, but unusable graph that contained all 50 features, and
broke it down into the following categories:

The first category created was the networking category. Out
of the network features that are documented by cuckoo sandbox
and are within the 50 features we collected from the json file, only
three were noteworthy during this analysis. The three noteworthy
features were hosts, dns-servers, and udp connections as displayed
in Figure 1. Each of these features are distinctly shown in each
category with udp being accessed most in benign software, dns
servers being accessed most by malware, and hosts being utilized
by ransomware.

Figure 1: Most expressed networking features displayed. (R
= Ransomware, B = Benign software, and M = Malware Sam-
ples)

The next category created was the api and dll calls. These are
most commonly utilized for ransomware and malware detection
by other researchers as shown in these sources [1, 2, 7, 8], hence
it is important to monitor them more rigorously. In Figure 2, five
features are identified to be notable, API, apistats, dll, dll-loaded,
and importer-dll-count. API which is the amount of api calls made,
apistats reflects the statistics about those api calls. The dll feature
is the amount of dll’s that are called, dll-loaded is the number of
dlls that were run by the code, and were able to be found through

static analysis, while importer-dll-count refers to dll’s that were
imported during dynamic analysis which is normally an obfuscation
technique. In this analysis features unique to benign software were
dll, features added with malware were api calls and dll loading, and
features intensified with ransomware being used logged occurring
more frequently than with malware.

Figure 2: Most expressed API and dll features displayed. (R =
Ransomware, B = Benign software, and M = Malware Sam-
ples)

Another important category that was developed in this research
was registry events. As shown in Image 3, this graph consisted
of registry reads, registry writes, and registry accesses with the
registry-opened stat. We also included command-line to show com-
mands within the program that are sent directly to windows and
it integrates with the registry events. We see little activity from
any of these features in benign software, though we see a lot of
registry openings and command line operations in malware, and
in ransomware we see registry reads and writes along with the
registry opening and command line events that we also saw in
malware.

Figure 3: Most expressed Registry and Events features dis-
played. (R = Ransomware, B = Benign software, and M =
Malware Samples)

The next major category analyzed was File Interactions. Total
files referenced, file paths referenced, and files read and created

ACM MobiHoc ’23, October 23–26, 2023„ Washington D.C., MD Schoenbachler and Krishnan, et al.

were reviewed. In malware a significant amount of action with
file reading is identified, but with ransomware all files referenced
in this category are relevant. From a visual standpoint, this may
be the most promising category for detecting and distinguishing
ransomware from malware.

Figure 4: Most expressed file features displayed. (R = Ran-
somware, B = Benign software, and M = Malware Samples)

3.5 Machine Learning
Machine Learning was tested from a Random Forest Classifier, Gra-
dient Boosting Classifier, Decision Tree Classifier, and Support Vec-
tor Machine (SVM) classifier. Binary classification was performed
on each training and testing set for both malware and ransomware
analysis and benign software and ransomware analysis. Perfor-
mance on all 50 features was conducted as well as additional train-
ing and testing from selected features. Features selected included:
process identifier (proc-pid) to represent PROC memory; registry
key read (regkey-read), command line (command-line), registry
key written (regkey-written), and registry key open (regkey-open)
to represent registry and event processes; hosts, dns servers(dns-
servers), and udp to represent network activity; file, path, file types
(filetype), file readings (file-read), and file creations (file-created) to
represent file interactions; and API calls in question (api), number
of imported dynamic link libraries (imported-dll-count), number of
system DLL libraries used by the malware during analysis (dll), and
APIStats (apistats) to represent API and DLL activity. We chose to
filter from these features to test if certain isolated processes could
yield improved classification. Accuracy scores were computed for
ransomware and malware comparison, benign software and ran-
somware comparison, ransomware and malware comparison with
selected features, and benign software and ransomware with se-
lected features. Each classifier computed a precision score with
labels specified. For example, Malware and Ransomware Analysis
showed a precision score that was just specified towards Malware
and just specified towards Ransomware. The same label calcula-
tions were specified for Recall and F1-scores as well. Simply stated
each classifier calculated an accuracy for performance as well as a
precision, recall, and f1-score with proper label specifications. The
following modules, scores, and classifiers were imported from a
scikit python learning module for testing and training.

4 RESULTS AND DISCUSSION
4.1 Ransomware Versus Malware
4.1.1 All 50 Features. In Table 1, this dataset was primarily tested
with 56 malware and 56 ransomware samples with training and
testing being split. The 112 samples came from Dataset Two which
consists of samples that were collected manually. Best performing
classifiers are Random Forest, Decision Tree, and Gradient Boosting
showing a 100% accuracy. The worst performing is SVC, showing
low model accuracy (0.609) but no false positive identification rate
in ransomware labeling. In machine learning, typically a 100% is
a score that is conjectural in nature. However, since our sample
size for training and testing is relatively small and malware and
ransomware are very distinct in nature, proven from our Graph
analysis data, it is possible that such scores would appear in ac-
curacy, precision, recall, and f1 scores. From this data alone, each
classifier computed no false positive for ransomware labeling and
scored a 100% at predicting a positive rate regarding recall on mal-
ware. With regards to precision on malware, three out of the four
models score no false positives with the exception of SVC (0.571).
Recall on ransomware is almost perfect; however, SVC fails to pre-
dict ransomware activity through 0.18 score. F1-scores are similar
for ransomware and malware labeling; however, all four classifiers
are better at classifying malware than ransomware activity due to
SVC scoring 0.73 on malware labeling.

Table 1: R = ransomware as true positive label, M = malware
with true positive label

4.1.2 Feature Selection Testing. Featuring network activity with
Table 2, all four classifiers were perfect in accuracy, precision, re-
call, and f1-score. Even though a 100% score is very unrealistic in a
large dataset setting, it is possible with the small sample size as is
presented in this particular dataset. Similar logic can be applied to
Table 1. This can be considered the best for prediction for classifi-
cation though somewhat speculative in performance. These scores
amongst all classifiers show no false positives with precision scores
of 100%. Additionally, a 100% positive prediction rate amongst both
labels of ransomware and malware is present as well. These scores
show that ransomware is most definitely distinguishable from mal-
ware regarding network activity.

Table 2: R = ransomware as true positive label, M = malware
with true positive label

In Table 3, Dynamic Link Library and API activity yielded rel-
atively high scores in performance with three out of four models
scoring above an 85% in accuracy. There is also a zero false posi-
tive rate regarding ransomware performance. There is a relatively

Sorting Ransomware from Malware Utilizing Machine Learning Methods with Dynamic Analysis ACM MobiHoc ’23, October 23–26, 2023„ Washington D.C., MD

low false positive performance in precision testing for malware,
especially in Decision Tree and Gradient Boosting; however, SVC
scores are high in false positive rate. The percentage of correctly
identified positive labels in malware labeling is 100% for all four
models. Similarly, the same can be said for three out of the four
models in Random Forest, Decision Tree, and Gradient Boosting
amongst ransomware labeling with SVC performing at its lowest.
SVC performs the worst in this particular testing set. Regarding
F1-scores, for DLL and API-based features there is better model
performance in malware identification as a true positive label rather
than ransomware which is shown through higher F1-scores. The
best performing models are Decision tree (accuracy = 96% and f1
>= 0.95) and Gradient Boosting (accuracy = 96% and f1 =0.95) with
random forest coming in third (accuracy = 87% and f1 = 0.89). Due
to variability in numerical data, it would be appropriate to test
from other models as well to yield higher scores in numerical data
overall.

Table 3: R = ransomware as true positive label, M = malware
with true positive label

In Table 4, file processes yielded very similar scores in model
accuracy for three out of the four models in this particular testing
set with SVC as the exception with 65%. With a model accuracy of
91% on Random forest, Decision tree, and Gradient Boosting, the
classifiers are shown to have a very high performance in testing
overall. There is also no false positive prediction in ransomware
labeling which is very optimal. There is also a very low false positive
rate on malware labeled data with SVC as the exception again
given a 0.6 precision score. SVC overall is performing the worst
consistently throughout most of these tests in ransomware versus
malware performance which is seen in Table 1, 3, 4 and 5. There is
a 100% positive label prediction rate regarding recall on malware
samples. Similarly, there is also a very high positive prediction rate
with SVC performing the worst.

Table 4: R = ransomware as true positive label, M = malware
with true positive label

For registry and event activity in Table 5, three out of four mod-
els show at least 85% in model accuracy with SVC performing the
lowest with 57%. Decision Tree(96%) and Gradient Boosting (96%)
perform the best in classification regarding metrics in registry and
event. There is no false positive identification in ransomware la-
beling and a 100% recall performance amongst all four models in
malware identification. Three out of four models again seem to
show a low false positive rate with SVC as the exception with mal-
ware labeling. Regarding recall on ransomware labeling, there is
a very high sensitivity among Random Forest (precision score =

0.73), Gradient Boosting (precision score = 0.91), and Decision Tree
(precision score = 0.91) data. Overall, there is better classification
on malware labeling than ransomware given F1-scores.

Table 5: R = ransomware as true positive label, M = malware
with true positive label

4.2 Ransomware Versus Benign Software
4.2.1 All 50 Features. In Table 6, we compare ransomware to be-
nign software samples. Trainingwas run onDataset One and testing
was run on Dataset Twowhich consists of 137 samples (57 = number
of ransomware, 80 = number of benign software). Random Forest
performing the best compared to other models is seen here yielding
an 85% accuracy score for binary classification between benign
software and ransomware samples. Precision on ransomware soft-
ware was highest on SVC (0.96) showing little false positive rates in
benign software identification. However, the same cannot be said
for benign software precision labeling where it yielded the highest
false positive rate compared to other models (0.70) with Random
Forest performing the best (0.93). Random Forest also performs best
against other models on recall for ransomware labeling showing
the highest sensitivity. For recall on benign software, SVC performs
the best (PR=0.9583) with Random Forest coming (PR= 0.7647) in
second. For F1-scores on ransomware data and benign Software,
Random Forest performs the best. SVC and Random Forest are the
best performing models in classification refer to Table 4.2. How-
ever, the variance in scores should be noted. Therefore, it’s safe
to assume other models should be tested for further classification
such as a graph neural network model. This should be done to yield
much more conclusive results; however, Random Forest performs
the best overall.

Table 6: R = ransomware as true positive label, B = benign
software with true positive label

4.2.2 Feature Selection Testing. In Table 7, we measured network
activity, which was the worst performing classification regarding
filtered features yielding scores of at most 59% accuracy. Due to
the variance in numerical data, we cannot conclude that network
activity alone can properly detect differences in ransomware and
benign software.

Scores varied throughout testing but scores were relatively close
in range in Table 8 for API and dll calls. SVC had the best per-
formance in model accuracy and other metrics, yielding a 90%
F1-score which is quite impressive. SVC (88% accuracy) performs
the best when dealing with API and DLL related features. Precision
on ransomware and Recall on benign software are also showing

ACM MobiHoc ’23, October 23–26, 2023„ Washington D.C., MD Schoenbachler and Krishnan, et al.

Table 7: R = ransomware as true positive label, B = benign
software with true positive label

a 100% which translates to no false negative identification when
true positives is seen for ransomware classification and 100% recall
for ransomware data comparison. All classifiers scores are rela-
tively variable but no concerningly low score to be labeled as a bad
performance. Random Forest also performed very well showing
the best Precision on benign software(PR = 0.9286) and Recall on
ransomware classification (0.912).

Table 8: R = ransomware as true positive label, B = benign
software with true positive label

In Table 9, we primarily tested process-related features, Random
Forest performs the best overall in terms of model accuracy. De-
cision Tree with an 83% accuracy, Gradient Boosting with an 84%
accuracy, and Random Forest are marginally close in performance,
which shows no dominant classifier throughout despite Random
Forest performing the best yielding about an 85% accuracy score.
It is important to note that Gradient Boosting and Random Forest
are relatively similar in nature as both classifiers work with deci-
sion tree processes; however, gradient boosting decision trees are
processed sequentially while random forests are processed inde-
pendently.

The worst performing classifier shown was SVC, displaying
the most varied data seen in Table 9. Important measurements
to note Precision on benign software outperformed Precision on
ransomware software showing a higher false positive rate when
identifying benign software compared to ransomware software.
The opposite can be said for recall as identification for ransomware
software outperformed recall on benign software with three out
of four classifiers generating above a 90%. F1-score performance
is better on benign software performance considering all scores
yielded above an 80% for each classifier.

Table 9: R = ransomware as true positive label, B = benign
software with true positive label

Registry and event activity yielded the best performance in clas-
sification amongst all classifiers tested in Table 10. Random Forest
and Gradient Boosting performed best in model accuracy with both
yielding 91%. In fact, Gradient Boosting and Random Forest yielded
the same score for Precision, Recall, and F1-scores for both ran-
somware and benign software activity. Registry and Events features

yielded the highest model accuracy overall compared to other se-
lected features. Registry and event testing also yielded the best
scores for precision testing in ransomware showing at least a 93%
in precision along with showing a low false positive identification
rate. Precision on benign software (0.9523) showed relatively high
scores with SVC as the exception. Recall on ransomware performed
very well showing at least a 70% performance. Recall on benign
software performed substantially better with SVC as the exception.
F1-scores on both ransomware and benign software performed the
best amongst other selected feature sets. Scores on benign soft-
ware had three out of four models showing at least a 0.9 or greater
score with SVC as the exception. Overall, registry and event activ-
ity showed the best performance amongst all metrics with all four
classifiers tested.

Table 10: R = ransomware as true positive label, B = benign
software with true positive label

5 CONCLUSION
By utilizing a dynamic analysis-based approach and sampled datasets,
we have identified a model that efficiently discerns ransomware
from benign software and malware using binary classification. In
terms of drawbacks of the study, the dataset for our ransomware
versusmalware comparisonwasmuch smaller in size due to the lack
of obtainable large sets of ransomware samples. Our benign and
ransomware samples for training were primarily obtained from an
external repository. However, our testing set consisted of manually
collected samples.

When comparing ransomware versus benign software, we were
able to show that registry and event related features were the most
optimal in performance in identifying ransomware versus benign
software. We were able to select features on registry and event
related inputs by looking from a graphical spectral analysis to map
out the activity of such features amongst benign software, malware,
and ransomware. Similarly, we were able to discern certain features
in network activity from these graphs. As a result, when comparing
ransomware and malware, we were able to show that network
activity scaled the highest in model performance overall.

For ransomware versus malware testing and training, most clas-
sifiers were able to yield a distinguishable difference in malware
versus ransomware just from accuracy scores alone with Decision
Tree and Gradient Boosting classifiers performing the best over-
all. Additionally, most classifiers were able to show differences in
benign software and ransomware where Random Forest and SVC
performed the most optimally. We can identify several features that
can be used in tandem to identify ransomware from malware and
benign programs.

REFERENCES
[1] Juan A. Herrera-Silva and Myriam Hernández-Álvarez. 2023. Dynamic feature

dataset for ransomware detection using machine learning algorithms. Sensors 23,
3 (2023), 1053. https://doi.org/10.3390/s23031053

https://doi.org/10.3390/s23031053

Sorting Ransomware from Malware Utilizing Machine Learning Methods with Dynamic Analysis ACM MobiHoc ’23, October 23–26, 2023„ Washington D.C., MD

[2] Shanxi Li, Qingguo Zhou, Rui Zhou, and Qingquan Lv. 2022. Intelligent Malware
Detection Based on Graph Convolutional Networks. The Journal of Supercomputing
78, 3 (2022), 4182–4198. https://doi.org/10.1007/s11227-021-04020-y

[3] NTFS123. 2018. NTFS123/Malwaredatabase. https://github.com/NTFS123/
MalwareDatabase

[4] Aldo Pareja, Giacomo Domeniconi, Jie Chen, Tengfei Ma, Toyotaro Suzumura, Hi-
roki Kanezashi, Tim Kaler, Tao Schardl, and Charles Leiserson. 2020. EVOLVEGCN:
Evolving graph convolutional networks for dynamic graphs. Proceedings of
the AAAI Conference on Artificial Intelligence 34, 04 (2020), 5363–5370. https:
//doi.org/10.1609/aaai.v34i04.5984

[5] Umara Urooj, Bander Ali Al-rimy, Anazida Zainal, Fuad A. Ghaleb, and Murad A.
Rassam. 2021. Ransomware detection using the dynamic analysis and Machine
Learning: A Survey and Research Directions. Applied Sciences 12, 1 (2021), 172.

https://doi.org/10.3390/app12010172
[6] Ytisf. 2014. YTISF/thezoo: A repository of Live Malwares for your own joy and

pleasure. thezoo is a project created to make the possibility of malware analysis
open and available to the public. https://github.com/ytisf/theZoo

[7] Umme Zahoora, Asifullah Khan, Muttukrishnan Rajarajan, Saddam Hussain Khan,
Muhammad Asam, and Tauseef Jamal. 2022. Ransomware detection using deep
learning based unsupervised feature extraction and a cost sensitive pareto ensem-
ble classifier. Scientific Reports 12, 1 (2022). https://doi.org/10.1038/s41598-022-
19443-7

[8] Zikai Zhang, Yidong Li, Wei Wang, Haifeng Song, and Hairong Dong. 2022. Mal-
ware detectionwith dynamic evolving graph convolutional networks. International
Journal of Intelligent Systems 37, 10 (2022), 7261–7280. https://doi.org/10.1002/int.
22880

https://doi.org/10.1007/s11227-021-04020-y
https://github.com/NTFS123/MalwareDatabase
https://github.com/NTFS123/MalwareDatabase
https://doi.org/10.1609/aaai.v34i04.5984
https://doi.org/10.1609/aaai.v34i04.5984
https://doi.org/10.3390/app12010172
https://github.com/ytisf/theZoo
https://doi.org/10.1038/s41598-022-19443-7
https://doi.org/10.1038/s41598-022-19443-7
https://doi.org/10.1002/int.22880
https://doi.org/10.1002/int.22880

	Abstract
	1 Introduction
	2 Related Works
	3 Methods
	3.1 Datasets
	3.2 Using Cuckoo Sandbox™
	3.3 Feature Extraction
	3.4 Feature Analysis
	3.5 Machine Learning

	4 Results and Discussion
	4.1 Ransomware Versus Malware
	4.2 Ransomware Versus Benign Software

	5 Conclusion
	References

