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ABSTRACT
Point cloud data gathered through millimeter wave sensors has
garnered increasing attention for its critical applications, including
automotive radars, security systems, and notably, gesture recog-
nition. It provides a non-intrusive and robust approach towards
human-computer interactions; however, its reliance on real-time
data makes resilience of paramount concern. Attacks on millimeter-
wave sensors can have catastrophic effects. From real-time spoofing
to data poisoning attacks or even just imperfect or poor data, sys-
tems based on 2D and 3D point cloud machine learning models can
be extremely vulnerable. Despite this, there exist few studies pri-
oritizing the robustness of time-sensitive point clouds. This study
presents an in-depth examination on the effects of noisy data on
frame based time-sensitive point clouds used in millimeter wave
gesture recognition machine learning models. Noisy data can be
introduced during the training stage where imperfect data is fed to
the model, causing this model to misclassify test-time samples and
lower the overall accuracy of the model. We stage and evaluate the
impact of four different, simple data noising scenarios to observe
vulnerabilities within this system and to emphasize the importance
of robust machine learning models. Noisy databases are particularly
relevant to deep learning systems because these models need large
amounts of data to train, many of which commonly scraped from
the internet with little to no manual inspection. Our findings high-
light the importance to not only dedicate time and research towards
innovations in mmWave gesture recognition, but also towards the
robustness and resiliency of these systems in order to proactively
prevent destructive effects.
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1 INTRODUCTION
In recent years, the deployment of millimeter wave (mmWave) tech-
nologies in combination with exponential advancements in deep
learning has brought a new wave of wireless communication and
sensing systems. These systems leverage the unique characteristics
of mmWave frequencies to achieve high data rates and enhanced
spatial resolution, making them useful for a wide range of applica-
tions, including 5G networks, autonomous vehicles, and advanced
radar systems [1].

One developing application of mmWave technology is in gesture
recognition using time-sensitive point clouds [3]. Point clouds,
comprising three-dimensional data points, serve as fundamental
representations for object detection, localization, and mapping in
various real-world scenarios. However, the accuracy and reliability
of these applications heavily rely on the quality and integrity of
the underlying point cloud data.

As mmWave-based point clouds become increasingly prevalent
in critical domains such as autonomous vehicles and advanced radar
systems, ensuring robustness of these systems is of the utmost im-
portance. This research focuses on the vulnerability of specifically,
time-sensitive and frame based gesture recognition systems under
three distinct neural networks (long short-term memory, convo-
lutional, and transformer). Despite the numerous benefits offered
by mmWave-based point clouds, their susceptibility to adversarial
attacks and noisy databases is a growing concern. In contrast to
sophisticated and highly targeted data poisoning attacks, noisy data
is simpler yet still potentially impactful. These noisy data set scenar-
ios involve the introduction of noise or perturbations into the raw
point cloud data, be it deliberate or accidental, which disrupts the
accuracy and reliability of the underlying processing algorithms.
Imperfect data labeling is a large issue since typical data labeling
for large data sets is outsourced and can be subject to errors. Due to
the scale of prospective data sets and their dynamic nature (in the
case of our research), the annotation process is inherently complex
and subsequent labeling is often conjoined with noise. In addition,
errors in data collection can lead to noisy data. For example, in
gesture recognition, different postures of the person articulating
each gesture and different environments can contribute to noisy
data sets. Furthermore, faulty or even misaligned equipment can
similarly result in flawed point clouds. These errors in data col-
lection and labeling can lead to models misclassifying gestures
during test-time, lowering and potentially compromising the over-
all accuracy of gesture recognition systems. While there exist many
studies examining the utilities of these technologies, numerous data
poisoning attacks [2][4][6], and even explorations into adapting
frameworks to be robust against perturbations [5], we are unaware
of any investigating the robustness of dynamic and time-sensitive
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systems, particularly gesture recognition, under various models
and noise.

The four types of noisy data scenarios we induce in this study are:
mislabeling, rotated point clouds, missing frames, and misordered
frames. To represent mislabeling, we apply simple label flipping
to invert the labels of a percentage of frames to induce misclassi-
fication. In order to simulate misalignments and variations in the
creation of training data, we introduce rotated point clouds: a rota-
tion of coordinates within point cloud frames by a parameterized
angle. To replicate missing data scenarios and faulty equipment, we
script the removal of frames from critical gestures within the train-
ing data. Finally, to explore the effects of disruptions in temporal
flow and structure of data samples, we use seeded randomization
to shuffle the order of frames and affect gesture recognition.

While data noising situations and imperfect data might not be
as subtle or stealthy as their more complex counterparts, they can
still lead to detrimental consequences in time-sensitive applications.
The injected noise can distort the geometry of the point clouds,
mislead object detection algorithms, and compromise localization
accuracy, ultimately putting the safety and performance of the
entire system at risk.

This research paper focuses on the impact of noisy data on time-
sensitive mmWave point clouds in a mid-air gesture classification
system. We induce data noising and subsequently review classifi-
cation accuracy of various model as understanding these realistic
scenarios is paramount to developing robust defenses against them.

2 BACKGROUND
2.1 mmWave
Millimeter waves (mmWaves) are a portion of the electromagnetic
spectrum that falls within the microwave frequency range. Their
wavelengths typically range from 1 to 10 millimeters (frequencies
between 30 and 300 gigahertz). Applications of mmWaves include
wireless communication, radar systems, imaging, and sensing. For
example, mmWave sensing can be used for occupancy sensing,
through-wall sensing, and gesture recognition.

2.2 Point Clouds
2D and 3D point clouds are a representation of two to three dimen-
sional data composed of individual points in a coordinate system.
Each point in the point cloud is primarily defined by its X, Y, and
sometimes Z coordinates, representing its position in space. Point
clouds capture the geometric information of objects and scenes,
making them valuable for various applications in computer vision,
augmented reality, and autonomous vehicles. One can easily lever-
age spatial information through point clouds which can aid in the
classification of gestures such as biannual and circular gestures.

2.3 Models
The three most common model options for gesture based recog-
nition systems are convolutional neural networks (Conv), long
short-term memory networks (LSTM), and transformer neural net-
works (Trans). Convolutional neural networks are a class of deep
learning models specifically designed for processing and analyzing
visual data. The key components of convolutional neural networks
are convolutional layers, pooling layers, activation functions, fully

connected layers, training, and backpropagation. Long short-term
memory networks are a type of recurrent neural network designed
to handle sequential data (which is particularly applicable to time-
sensitive point cloud data). Long short-term memory networks
consist of specialized memory cells and gates that control the flow
of information. Transformer neural networks are a type of deep
learning architecture. The transformer model aids in natural lan-
guage processing and various other sequence-to-sequence tasks by
using a self-attention mechanism without using recurrent or con-
volutional layers. Transformer networks consist of an encoder and
a decoder, which both use layers of self-attention and feed-forward
neural networks. The encoder processes the input sequence while
the decoder generates the output sequence in sequence to sequence
tasks. In this research we study the accuracy of gesture classifica-
tion associated with these three different models and investigate
the robustness of each model to noisy data sets.

3 RELATEDWORKS
3.1 Pantomime
Mid-Air Gesture Recognition with Sparse Millimeter-Wave Radar
Point Clouds lays the framework for mid-air gesture recognition
systems. Pantomime uses a hybrid model architecture for optimized
spatio-temporal feature extraction which is designed to recognize
sparse motion gestures [2]. In the classification system, local fea-
tures are first extracted. This process is iterative until features of the
whole point cloud are computed. Multiple set abstraction levels are
used to mimic the multiple convolution levels in CNNs. Pantomime
uses 21 types of mid-air gestures including bimanual, linear, and
circular gestures. Pantomime provides real-time recognition and
achieves 95% accuracy of classification for the 21 gestures.

3.2 Learning With Noisy Labels
Different methods have been proposed in mitigating the impact of
noisy data on model accuracy. A recent work introduces the Point
Noise-Adaptive Learning (PNAL) framework, tailoring its strategies
to the nuances of point cloud data, such as spatially variant noise
rates. PNAL incorporates novel methodologies, including point-
wise confidence selection based on historical predictions and cluster-
wise label correction to enhance the accuracy of model trainingwith
noisy labels, leading to improved performance, even in scenarios
where a significant portion of the labels is inaccurately annotated.
[5].

3.3 Additional Studies
Several studies have explored the vulnerabilities and potential im-
pact of targeted data poisoning attacks on mmWave-based point
clouds, leading to valuable insights and defense mechanisms. Some
related research in this area includes the following papers. Defend-
ing against 3D Adversarial Point Clouds via Adaptive Diffusion in
which the authors proposed a defense strategy against simple data
noising attacks on mmWave point clouds [6]. Leveraging adver-
sarial training, they trained point cloud processing models with
augmented datasets containing adversarially noised samples. The
results showed resilience to data noising attacks. In Shape-invariant
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3D Adversarial Point Clouds, the researchers introduced shape-
invariant perturbations, which imposed minimal changes to point
cloud geometry while causing significant misclassification [3].

This research highlights the growing concern over simple data-
based attacks on time-sensitive mmWave point clouds. Conse-
quently, researchers have been actively exploring defense strategies,
detection methods, and robust algorithms to ensure the resilience
of mmWave-based applications in the face of such attacks.

4 PROBLEM SETTING
In this study, we investigate the robustness of a time-sensitive point
cloud gesture recognition system on three common models (LSTM,
Conv, Trans) in the presence of different types of noisy data. Gesture
recognition plays a critical role in human-computer interaction,
enabling natural and intuitive control of various applications. How-
ever, real-world scenarios often introduce various forms of noise
during training time that can degrade the performance of gesture
recognition systems. We focus on the following types of noisy data:

(1) Rotation Noise: Variations in device orientation or gesture
execution may lead to slight rotations in point clouds, affect-
ing the system’s ability to accurately recognize gestures.

(2) Mislabeled Data: Noise introduced by incorrect gesture labels
in the training data set can result in confusion during recog-
nition, impacting the system’s reliability. This can occur at
various stages during the training process.

(3) Frame Loss: Missing or incomplete frames in the input point
cloud sequence could disrupt the temporal context and chal-
lenge the system’s ability to maintain accurate recognition
over time; it can often be introduced through faulty equip-
ment.

(4) Unordered Frames: Disordered frames in the input sequence
may disrupt the temporal sequence, requiring the system to
handle out-of-order data.

5 METHODOLOGY
To comprehensively assess the robustness of time-sensitive ges-
ture recognition systems, we conducted extensive experimentation
using a vast dataset comprising 7402 point cloud sequences en-
compassing nine distinct gestures: up, down, left, right, clockwise,
counterclockwise, s, x, z – the last three gestures formed through
tracing the respective letter in the air. Each sequence consisted of
between 10 to 20 point cloud "frames" in order to induce temporal
structure. The training set was formed from 70% of this data while
the test set, the remaining 30%. To mimic real-world noisy scenar-
ios, we employed data augmentation during training, introducing
four distinct types of noise (rotation, mislabeling, frame loss, and
unordered frames) to the clean dataset. In each case, we introduced
controlled variations into the data, and employed equal testing on
LSTM (Long Short-TermMemory), Convolutional, and Transformer
models for our evaluations on robustness. We trained each model
over 10 epochs, subsequently testing them on the remaining clean
data to obtain our accuracy for each trial. 10 epochs was chosen
due to resource and time constraints; training and testing on an
entirely clean data set with these specifications resulted in between
93 - 97 percent accuracy on all models.

Table 1: Accuracy on clean training set

Model
Baseline
Validation
Accuracy (%)

LSTM 97.21
Conv 95.5
Trans 93.2

In the case of mislabeled data, we conducted isolated experi-
ments, systematically incrementing the amount of noise in the data
set by 10%, eventually reaching a scenario with 100% mislabeled
data. To deliberately induce mislabeling, we employed an algo-
rithmic approach to interchange each gesture with its opposing
label. For the letter gestures, we implemented a circular swapping
strategy to further augment the mislabeling process.

For rotational noise assessment, we systematically applied rota-
tions ranging from 15 to 90 degrees in intervals of 15 degrees, repli-
cating conceivable perturbations in practical applications. These
modifications were evaluated under two scenarios: one with an
entirely noisy data set and another with 50% of the data seeded
randomly to be afflicted by noise.

To assess the impact of frame loss, we simulated the random
removal of frames at intervals of 25%, 50%, and 75% across noise
levels of 25%, 50%, 75%, and 100% in order to ensure a wide array of
measurements. The increments for this scenario were larger due
to the added variable of frame loss percentages leading to a larger
number of trials in combination with time contraints.

Lastly, in the context of unordered frames, we introduced ran-
domly seeded shuffling of frames to disrupt the temporal sequence
of frames within data set subsets. We similarly conducted experi-
ments at 10 intervals, progressively increasing the noise levels from
10% to 100%.

The primary evaluation metric employed was accuracy (divid-
ing the number of correct predictions by the total number of pre-
dictions) quantifying the system’s correct recognition of gestures
amidst noisy conditions. To ensure results, each experiment was
repeated three times, and average accuracy was computed. We
decided against a greater number of trials due to time constraints.

In summary, our experimental setup entailed training the LSTM,
Convolutional, and Transformer models on the augmented datasets
with varying noise levels, followed by rigorous testing and per-
formance assessment. This comprehensive evaluation framework
aimed to provide insights into the resilience of gesture recogni-
tion systems in real-world noise-ridden scenarios, offering valuable
perspectives for improving their practical utility and performance.

6 EVALUATION
To start, we compared different deep learning model options. We
wanted to investigate how noisy data impacted the validation accu-
racy of the system using these three different models: convolutional
neural networks (CNN), long short-term memory networks, and
transformer neural networks. CNN’s are mainly used for image
processing and object detection. It is clear why using a CNN would
be beneficial in gesture classification. Long Short Term Memory
Networks (LSTM’s) can learn long-term dependencies because they
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Figure 1: Accuracy with mislabeled gestures

Figure 2: Accuracy with rotation on 50% of data

retain information over time. LSTM’s are advantageous in time-
series prediction so they pose an advantage over CNN’s because
we are working with time-sensitive point cloud data. Transformer
neural networks (transformers) attain high accuracy in classifica-
tion due to their ability to learn contextual relationships between
input data, allowing for more accurate predictions.Transformers
are designed to handle sequential data, but do not require that the
sequential data be processed in order. Thus transformers are able
to find the relationship between sequential elements when these
elements are out of order.

Looking at the clean data (without data noise injected), we can
see from Table 1 that the baseline validation accuracy is highest
for LSTM and lowest for Trans, though all are over 90% accurate.
Validation accuracy is the accuracy of the gesture recognition on
the clean test data set.

Beginning with label flipping, we can see in Figure 1 that all three
of the models drop from high accuracy to an accuracy consistent
with guessing when 50% of the data has been tampered with. After
60% of data and beyond, the accuracy plummets to less than 20% of
gestures correctly classified for all three models. Interestingly, the
LSTM had the highest accuracy in low data noising situations, but
the lowest accuracy in high data noising situations. Conversely, the
transformer model was more stable in its performance throughout
the experiments.

Figures 2 and 3 show the effect that coordinate rotation has on
accuracy. With 50% of the data rotated, all three models perform

Figure 3: Accuracy with rotation on entire data

Figure 4: Accuracy with 25% frame loss

Figure 5: Accuracy with 50% frame loss

remarkably well with no model having an accuracy below 90%
for all the rotation angles. With 100% of the data rotated we can
see that all three models perform well until a rotation of about 70
degrees, when the accuracies of all three models drastically drop. In
comparing the three models against each other, all three perform
comparably with each other, though with the convolutional neural
network attaining the most stable classification accuracy when
100% of the data is rotated.

We can see from Figures 4-6 the impact that frame deletion has
on validation accuracy. With 25% loss all three models have stable
performance even when 100% of the data is impacted, with all the
models achieving accuracy above 90%. When there is 50% of frames
deleted, there is a clear accuracy drop when 75% or more data is
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Figure 6: Accuracy with 75% frame loss

Figure 7: Accuracy with unordered frames

impacted. Interestingly, when there is 75% frame loss, all three
models have a very similar trend, dropping in accuracy when 75%
of the data is impacted. However, we can see that when 100% of
the data has frame loss, the accuracies attained by all three models
are lower than in the 50% loss case. In both the 50% and 75% loss
cases, the LSTM model performs the best when a high percentage
of the data is impacted, and the CNN model performs the worst.

When looking at the impact that frame scrambling has on valida-
tion accuracy in Figure 7, we can see that all three models perform
well (over 90% accuracy) up until 90% of the data is impacted. Then,
both LSTM and CNN are impacted, while the transformer model
stays stable above 90% accuracy. Counterintuitively, all three mod-
els achieve a high accuracy even when a vast majority of the data
has scrambled frames. For the transformer model, this makes more
sense because as mentioned above, transformers do not require that
the sequential data be processed in order. However, both the LSTM
and CNN models perform well even when 100% of data is scram-
bled (still attaining over 75% accuracy). This may suggest that the
time-sensitivity of this data is not extremely important. All three
models classify gestures based on physical and temporal features
of the frame sequences. If the accuracy is only mildly affected by
frame scrambling, this implies that this gesture classification relies
heavily on the physical features of the frame sequences and not
the temporal features. This claim is justified by the fact that all

three models achieve remarkably high accuracy when 100% of the
data is impacted by frame scrambling. This suggests that gesture
recognition systems relying on time-sensitive point clouds only
depend heavily on the physical features of these point clouds and
do not actually depend very much on the temporal features of these
sequences. This could mean that gestures can be compressed into
only one or two frames, rather than kept as a sequence of frames,
since these gestures can still be accurately classified. Training and
testing the gesture recognition system on fewer frames would help
save on computation and time requirements of this system.

7 LIMITATIONS AND FUTUREWORKS
While this study provides valuable insights into the robustness
of time-sensitive gesture recognition systems utilizing mmWave-
based point clouds, it is important to recognize certain limitations
that shape the scope of our findings. Firstly, our examination of
noisy data scenarios was intentionally simplified to facilitate con-
trolled experimentation. In real-world scenarios, noise can exhibit
intricate and unpredictable patterns, potentially even merging var-
ious types of noise and yielding distinct effects on the system’s
behavior. Furthermore, the uniform distribution of noise across
our dataset might not accurately mirror the variability of noise
patterns encountered in these real-world environments. As a result,
the translation of our controlled scenarios to actual noisy data oc-
currences in real world settings should be approached with caution.

Secondly, the focus of our investigation centered on a specific set
of nine distinct and relatively simple gestures. While these gestures
serve as foundational examples, the applicability of our findings to a
broader array of gestures and intricate interactions warrants further
exploration. The influence of dataset specifics on our results cannot
be overlooked, and examining robustness across a more diverse
range of datasets could provide a richer context for understanding
the generalizability of our conclusions.

Our study also employed a specific selection of model archi-
tectures—CNNs, LSTMs, and Transformers—to assess robustness.
Other architectures, which were not explored in this study, could
potentially offer different perspectives on the impact of noisy data;
future investigations could encompass a broader spectrum of archi-
tectures to attain a more holistic understanding.

Finally, due to time constraints, we were unable to further re-
search methods in which to improve model robustness. In the future
there should be research on techniques applicable inmaking gesture
recognition systems more robust to noisy data. Potential paths may
be accomplished through data cleaning, integration, transformation,
or reduction. Data cleaning is the process of filling missing values,
smoothing and removing noisy data and outliers. Data integration
means integrating data from multiple sources. Data transformation
is normalization and aggregation of data. Data reduction reduces
the number of attributes and dimensions of the data. In the case
of this time-sensitive point cloud data, we have found that the
time sequences of frames is not very important in classification
accuracy over a Transformer neural network. This means that the
dimensionality of the gesture point clouds can be reduced. Devel-
oping classification systems using the above techniques will help
these systems be more robust and resilient to data noise and data
poisoning attacks.
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In conclusion, while our study contributes valuable insights into
the challenges of noise-induced robustness in mmWave gesture
recognition, the outlined limitations underscore the need for care-
ful interpretation of our results. Acknowledging these limitations
creates the path for future research endeavors to delve deeper into
the complexities of robustness and to cultivate a more comprehen-
sive comprehension of the practical implications of noisy data on
time-sensitive point cloud systems.

8 CONCLUSION
In our research, we underscore the critical importance of robust-
ness in time-sensitive gesture recognition systems using millimeter
wave point cloud data. Through controlled experiments, we ex-
plore the effects of distinct noise types – label flipping, coordinate
rotation, frame loss, and unordered frames – on gesture recogni-
tion accuracy. Our findings reveal that even simple noise scenarios
can significantly impact accuracy, highlighting the vulnerability of
these systems. However, recognizing our study’s limitations, such
as controlled data noise and specific model architectures, we advo-
cate for a comprehensive investigation into complex noise patterns
with more diversity in time-sensitive datasets.

As gesture recognition continues shaping various domains, ad-
dressing noisy data implications remains paramount. By fortify-
ing systems against noise, we pave the way for seamless human-
computer interactions and heightened safety across critical appli-
cations.
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