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ABSTRACT
Federated Learning (FL) has emerged as a promising approach
for training machine learning models across individual devices
while preserving data privacy. However, FL faces many challenges,
specifically a vulnerability to adversarial attacks due to its strict
adherence to ensuring individual client model and data privacy.
To mitigate these issues, dynamic clipping techniques have been
proposed which dynamically adjust the gradient clipping threshold
during model aggregation. However current iterations depend on
specific and often intensive calculations to determine a clipping
threshold which can lead to an over fitting to a specific data set or
attacker model. In this paper, we address the limitations of existing
FL and dynamic clipping approaches by introducing a novel method
that incorporates a group of trusted users during the aggregation
of client models for a global update. By identifying and utilizing
a subset of trusted clients, our method enhances the robustness
of model aggregation against malicious updates. This approach
not only maintains the model’s performance but also improves its
resistance to adversarial influences. We demonstrate the effective-
ness of our proposed method through extensive experiments thus
showcasing its superiority and simplicity in achieving enhanced
model security in federated learning settings.
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1 INTRODUCTION
Federated Learning (FL), an innovative use of machine learning, has
emerged as a cornerstone solution for collaborative model training
while preserving the privacy of user data [9]. This approach is
particularly relevant with the current landscape of data protection
regulations as it allows various entities to engage in collective
learning without compromising the data confidentiality of their
individual and more often than not unique users. Contrasting to
normal machine learning where an individual client is only able
to train on their individual user data, FL’s framework empowers
the collaboration of independent groups to glean valuable insights
from their respective data sources that previously would’ve been
impossible and illegal. This collaborative effort fosters informed
decision-making and innovative strategies for all participants to
benefit from such as spam email detection for corporate use [12]
and training language models for Google [11].

Despite the merits of collaboration, FL faces challenges such
as controlling client models and mitigating vulnerabilities intro-
duced by adversarial attacks. Notably, FL’s decentralized nature and
privacy preserving foundation makes it difficult to directly review
individual client training as a central aggregator/server. This design
characteristic renders the model susceptible to poisoning attacks
from individual malicious clients [7]. For example, the absence
and/or weaknesses of centralized data filtering mechanisms can
expose the global model to biases/backdoors originating from a ma-
licious client’s individual dataset [4]. Specific to security concerns,
the emergence of backdoor attacks, including pixel pattern-based
methods, poses additional risks [3]. These attacks compromise of
inserting a designated pixel pattern onto images during the training
phase of an individual client model so that it misclassifies the images
with the pattern backdoor. When this model is selected and aggre-
gated to the global model, the global model will also misclassify
any image it comes across with the same pattern backdoor.

This paper introduces a novel methodology, named TrustAggFL,
which strategically integrates a subset of trusted users during the
client model aggregation process. This approach aims to mitigate
vulnerabilities and fortify the security posture of federated learn-
ing environments, including defense against backdoor attacks. By
harnessing the contributions of trustworthy clients, TrustAggFL
seeks to bolster the integrity of aggregated models and enhance
resistance against adversarial influences, specifically pixel pattern-
based attacks. This contribution extends FL’s capabilities, offering
an innovative solution to its inherent limitations and emerging
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security challenges, making it well-suited for privacy-conscious
collaborative learning scenarios.

2 BACKGROUND ON PRIVACY-PRESERVING
DEFENSES

Differential Privacy is a solution in addressing privacy concerns
in model training. It trains models without ever exposing the in-
dividual data from users. The process involves privacy-preserving
mechanisms such as noise injection and data clipping that are used
by aggregators. These techniques not only mask the client models,
safeguarding individual data contributors [2, 15], but also act as a
strong defense against potential malicious backdoor adversaries
attempting to insert backdoors into the central model [10].

2.0.1 Clipping. Differential privacy can employ a technique known
as "difference clipping" to control the amount of information shared
during model updates. This process involves limiting the magnitude
of individual model parameter changes before their aggregation
[6]. By introducing noise to the updates within a bounded range,
differential privacy prevents malicious actors from extracting sensi-
tive information about individual data contributors [2]. Difference
clipping strikes a balance between accurate model convergence and
protecting the privacy of participants, thus enabling federated learn-
ing to harness the power of diverse data sources while upholding
stringent privacy standards.

Difference clipping is typically divided into two groups: static
and dynamic [10]. While both have the same goal of being privacy
preserving while maintaining overall task accuracy, the parameters
used for them are created in two different distinct approaches.

• Static: This method requires for a human (often the aggre-
gator) to set a fixed predetermined value to clip by as to
limit the size of the individual client updates. Although it
is simple and evenly clips all updates to the same "length",
this also becomes its Achilles Heel as the model converges
and model updates shrink [5, 10]. It’s difficult to achieve a
balance of clipping and preserving the model’s effectiveness
as past research [5] has shown. We also demonstrate this
finding in (Fig. 4). Over clipping (having a small parameter
preset shown by Fig. 1a) will hinder the contributions of
benign clients and the model fails to converge (reach a high
accuracy rate). Conversely, under clipping (having a large
parameter preset shown by Fig. 1b) results in a failure to
do its purpose of reducing the effectiveness of backdoors
(backdoor effectiveness stays high).

Drawbacks of Static Clipping

(a) Over Clipping (b) Under Clipping

Figure 1: Green lines represent benign updates while the red
is a malicious backdoor update. The circle represents the
preset clipping parameter. Finally, the arrow on the lines
represent where the model update "magnitude" is clipped.

• Dynamic: This method, on the other hand, adjusts the clip-
ping threshold based on the data or size of the updates. This
more logical approach takes into account the data charac-
teristics within each training round, ensuring that larger
updates (start of training) receive a more relaxed clipping
threshold, while smaller updates (end of training when the
model converges) are more tightly clipped [1, 5]. Dynamic
clipping can lead to a better convergence performance and
utilizes the data more effectively, enhancing the overall per-
formance of the federated learning process [10, 13, 16]. We
will also go over current iterations of/research on dynamic
clipping in Section 2.1.

2.0.2 Noising. In federated learning, noise is often introduced dur-
ing the aggregation of model updates from different participants.
This prevents an attacker from discerning specific information
about any single participant’s data by analyzing the aggregated
updates. Noise can be added using techniques like noise injection
or noise perturbation, which blur the actual update values without
significantly affecting the overall learning process [8, 10, 13]. By
adding noise, the central aggregator hopes to strike a balance be-
tween respecting client privacy while still retaining the ability to
extract valuable insights from the privatized client models.

2.1 Related Works
Some other works on improving existing dynamic clipping defenses
attempt a multitude of methods such as clipping to the mean or
median of previous client update L1/L2 Norms [1], a percentile of
users [2, 6, 14], or by some multiple coefficient of a mean, median,
or calculated value [5, 10, 13, 16].

While all these methods produced successful results, it should
be noted that many of them depended on some arbitrary and of-
ten complicated calculation to determine the clipping factor. For
example, a scaling factor of 1.1 times the mean [13] or to the 35𝑡ℎ
percentile [6]. While the introduction of scaling factors improves
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their performance, there must be careful consideration and statis-
tical analysis to prove that the increased complexity upholds the
integrity of the experiment’s findings. More paramount is that with
the variety of real world applications and model interactions, it
would be best for federated defenses to be simple and not depend
on an additional confounding variable for its success.

In our paper we will be focusing specifically on dynamic clip-
ping because maintaining the model’s integrity is easier to do with
clipping rather than noising. Additionally, our research focuses on
developing an innovative method for dynamic clipping where we
have a core group of "trusted users" that we assume will always
be benign and will always give us accurate results to update our
central model with. We will then use the L2-Norm update values
given by 𝑡 number of trusted clients (1-5) as a standard to perform
our difference clipping. To our knowledge, this is a novel method
and we show its effectiveness in reducing backdoor threats (BA)
while maintaining main task accuracy (MTA).

3 EXPERIMENTS
For our research, we used a modified version of the GitHub reposi-
tory that Eugune Bagdasaryan graciously provided with his publi-
cation on "How to Backdoor Federated Learning" [3]. Our research
is focused specifically on the image classification task using the
CIFAR-10 data set with the pixel pattern attack. We won’t be using
noising in our experiments to isolate and exclusively determine the
effects of clipping. The end goal that we are aiming for is to prove
that our defense is able to maintain overall task accuracy (MTA),
while diminishing the backdoor accuracy (BA).

3.0.1 Setup. We implemented the federated learning algorithms
using TensorFlow on a Anaconda virtual environment running
Python 3.7. All experiments were done on two Dell Precision 5470s
with an Intel i7-12800H CPU, Nvidia RTX A1000 GPU, 32 GB Ram
each on Ubuntu 22.04.

3.0.2 Parameters. For each experiment there are 100 clients that
each train an individual model. In each round of training, the central
aggregator selects 10 users to combine their models for an update
to the central model. From these 100 clients, we set aside 5 as the
trusted users group that can never be selected as backdoor clients.
Then from the remaining 95, we select 10 malicious users to insert
our pixel pattern backdoor. Finally, within the selection portion, we
can choose between 1 to 5 trusted users to be selected within the
10 users with the other 5 being randomly selected from our pool of
95 "unknown" users (85 good, 10 malicious).

3.0.3 Scenarios. In each round, the central aggregator selects 10
clients who are then trained and clipped separately and in sequen-
tial order before being aggregated into a global update. The only
modifications made to the default settings during our model train-
ing were changing the learning rate (0.05), the number of epochs
(100), and then for attacks the number of adversaries and their at-
tack weight scale.Wemade changes to the learning rate and number
of epochs to reduce the training time of models so we could quickly
prove the effectiveness of our method. Despite these changes, the
overall MTA of the model did not drop and still converged between
80% and 82% (with 350 epochs and a learning rate of 0.10, the MTA
was also around 80%).

3.0.4 Procedure. Our research can be categorized into four sce-
narios that we then add varying additional parameters to to show
the effectiveness of our method. All of these scenarios started with
a 10% poisioning rate (10 compromised clients out of 100) and a
backdoor weight scale of 2. We chose these values as the poisoning
rate is pretty standard within backdoor attack environment and if
the scaling rate is too high then it becomes trivial for the defense
to clip the longer backdoored models.

(1) Baseline: (No Clipping, No Attack) - This first scenario rep-
resents the baseline performance, where the model operates
without any attacker and without applying clipping. This
graph establishes a reference point for what the normal MTA
and BA of the model are without any adversarial influences.

(2) Attack with No Clipping: (No Clipping, Has Attack) - The
second scenario displays the model’s performance when
subjected to our backdoor attack without any defense mech-
anisms such as clipping or noise. This scenario allows us to
get MTA and BA results of a backdoored model to prove the
potency of the backdoor that we will be defending against.
We satisfy the conditions of a successful backdoor as it main-
tains the MTA, remaining stealthy, while achieving a perfect
success rate on the backdoor performance, BA.

(3) Attack with Static Clipping: (Static Clipping, Has Attack)
- The third scenario explores the model’s behavior with var-
ious parameters of static clipping. As we will show later,
utilizing a static parameter is difficult and more importantly,
unviable. Finding a balance between maintaining MTA and
and reducing BA is extremely difficult and time costly. We
will use these results to show the effectiveness and simplicity
of our dynamic approach during training.

(4) Attack with Dynamic Clipping: (Dynamic Clipping, Has
Attack) - Our fourth scenario investigates the model’s per-
formance when equipped with our new dynamic clip which
is designed to adapt to the converging behavior of our model
updates. This dynamic clip aims to provide a more robust
and flexible protection against backdoor attacks as we show
by outperforming traditional static clipping methods.

Through these four scenarios, our research aims to offer a com-
prehensive assessment of the model’s resilience against backdoor
attacks and the impact of static vs. dynamic clipping. The results
for all scenarios will be shown on the figures included in the next
section.

4 RESULTS
We have taken to liberty to split our Results section into four sub-
sections in the order of our previously mentioned scenarios. All
graphs included will fall into two categories: the first will display
the MTA of our model and the the second will show the BA. For
ease of viewing and comparison, all graphs will have axes that go
from 0 to 100 by intervals of 20 (x-axis: number of rounds trained,
y-axis: accuracy rate as a percentage).

4.0.1 Baseline - (No Defense, No Attack). In this scenario we ran
multiple tests with the parameters mentioned above to get an idea
of what results we should be expecting. Below we will show a graph
containing the results of 5 of the models trained.
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Baseline

(a) MTA

(b) BA

Figure 2: For this specific scenario, the different mod-
els/colors don’t need to be distinguished as they are trained
on identical parameters.

We saw that MTA hovers between 80% and 85% while BA is
around 10%. This is expected as the BA is determined bywhether the
backdoored images are classified correctly into the correct category.
Thus, if the backdoor has not been introduced in the round, then
the model randomly classifies the backdoored images and because
there are 10 categories, it has a one in 10 chance (10% MA) to get
it right. If it is partially introduced then the accuracy will be grow
until the backdoor has fully been inserted into the central model
which results in the model correctly misclassifying the backdoored
images into their respective categories (100% MA)

We will now use this 80% MTA and 10% BA as a comparison to
judge the success of our other scenarios.

4.0.2 Attack with No Clipping. From this point on we will show
one model for each set of different parameters as to not clutter our
graphs and confuse readers. In this test, we simply introduce an
attacker to see the effect of a backdoor attack.

In judging the potency of a backdoor, a successful one should
maintain the MTA (demonstrating its stealthiness) while also in-
jecting the backdoor into the model. Our attack accomplishes both
of those tasks as its MTA has a negligible difference and its BA is
100%. In fact, it was able to achieve that BA of a 100% within the
first 20 rounds as shown by Fig. 3b.

4.0.3 Attack with Static Clipping. We will include the baseline
(pink) and attacker (cyan) models in our graphs to act as references
for the effectiveness of static clipping. In our testing, we clipped
with L-2 Norm values ranging from 5 to 1000. We chose to clip
at intervals between 5 to 1000 because those were the size of the
updates we saw when printing out the update sizes during training.
From 5 to 50 we clipped by intervals of 5 and then after that at 100,

Attack Only

(a) MTA

(b) BA

Figure 3: Pink represents our baseline; Cyan is for our at-
tacker scenario.

250, 500, and finally 1000. The following figure will explain why
we chose such intervals.

Static Clipping

(a) MTA

(b) BA

Figure 4: Orange is clipping at 5; Black is at 10; Green at 20;
Purple at 50

As we notice in Fig. 3b, the static clipping value does not affect
the overall performance of the backdoor after 100 rounds of training.
We have chosen not to include results after the parameter of 50
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because as shown by the graph, the performance of our model at 50
(purple) is already virtually the same as having no static parameter
(pink) at all. Also as pointed out by others, we see that clipping too
tightly (parameter of 5) deteriorates the overall performance of the
model as it over clips the helpful benign updates (Fig. 3a).

4.0.4 Attack with Dynamic Clipping. For our method, we tried a
variety of tests involved with varying the number of trusted users, 𝑡 ,
selected during each round (𝑡 /10). We again will display the baseline
(pink) and attack (cyan) models to act as judgement standards to
our method. For sake of viewing, we have made these graphs bigger,
however we are still presenting all models shown in an identical
parameter to allow for fair comparison.

Varying the Number, 𝑡 , of Trusted Users

(a) MTA

(b) BA

Figure 5: Red: 𝑡 = 1; Green: 𝑡 = 2; Blue: 𝑡 = 3; Orange: 𝑡 = 4;
Black: 𝑡 = 5

There are a few important things to note with our method. While
using only 1 through 4 trusted users doesn’t succeed in reducing
the backdoor effectiveness, we see that we initially do mitigate
the effect of the backdoor while maintaining MTA (unlike in static
clipping). More importantly we see that using the median of 5
trusted users virtually eliminates the effect of the backdoor. In our
testing the critical value of 𝑡 to eliminate the backdoor fell between
3 and 5 depending on our model parameters.

For example, increasing the backdoor weight scale (values of
5 and 10 instead of 2) meant that the backdoor L2-norm updates
would be larger, thus making it easier for the median of 𝑡 = 3, 4
trusted users (less representative of all 100 clients as compared to
using 5) to clip the backdoor’s update size. This also means that if
we failed to catch the backdoor that it would proliferate within the
central model and quickly increase the BA due to it being a larger
update than a backdoor client with a scale of 2. However, we were
able to repeatedly get low BA results even with only 3 trusted users
(20% was the highest we saw with a weight clip of 5) to calculate a
dynamic clipping parameter.

After comparing our results across these four scenarios we are
able to conclude that our method is viable and is able to achieve
significant results in maintaining overall model accuracy while
eliminating backdoors.

Dynamic Clipping with Varied Backdoor Weights

(a) MTA

(b) BA

Figure 6: Purple: 𝑡 = 3 and weight of 5; Black: 𝑡 = 3 and weight
of 10; Blue: 𝑡 = 4 and weight of 5; Green: 𝑡 = 4 and weight of
10

5 LIMITATIONS AND FUTUREWORK
In this section, we want to discuss limitations to our method that
we were able to discover and make recommendations based on
those results that we would implement in the future.

5.0.1 More Backdoor Clients. We wanted to test the effectiveness
of our defense if more malicious users (20% and 30% poisoning rate
were tested) were included in the 100 clients under the assumption
that they could successfully coordinate a pixel pattern attack on
our model.

Unfortunately as we show in Fig. 7, our defense suffers when
tasked with too many attackers. However again, we are assuming
that these attackers are all able to sneak into our client pool as
well as properly coordinate an attack. We believe that in the real
world, this is difficult to accomplish and should not be perceived as
a major threat to our method.

5.0.2 Malicious Client within Trusted Users. Finally, we wanted
to test to see if our method would work if a malicious client was
able to slip into the trusted user pool that our central aggregator
calculates a dynamic clipping parameter from.

Again, unfortunately as shown if a malicious client is able to slip
into the trusted user pool, it is quiet trivial for them to successfully
introduce a backdoor. However, we believe that a central aggregator
can easily prevent this from happening by screening its trusted
users or even by using the client models that it individually trains.
If the aggregator is unable to guarantee such terms, then we would
advise them to use another defense method as ours depends on the
assumption that the trusted users are trustworthy.

With these drawbacks in mind, we want to restate that while
our method has been shown to be successful, it is not an end all be
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Varying Amounts of Attackers

(a) MTA

(b) BA

Figure 7: Red is 20 attackers; Green is 30 attackers; Pink is
baseline; Cyan is Attacker Only; Black is the model with 5
trusted users

Introducing a Sneaky Attacker

(a) MTA

(b) BA

Figure 8: Red is the malicious client; Pink is baseline; Cyan
is Attacker Only; Black is the model with 5 trusted users

all solution to preventing backdoor attacks in federated learning.
Users should employ the method appropriate to their circumstances
as to better their accuracy or chance of success. We would also
like to remind readers that malicious users will continue to evolve

and create new attackers and as a result we in the cybersecurity
community must continue to adapt to these constant advances.

6 CONCLUSION
In this paper, we proposed a new technique for calculating dynamic
clip parameters by introducing the concept of trusted users. We pre-
sented that by using this trusted pool of users, we can successfully
determine a parameter value to dynamically clip the update norms
of clients during the aggregation portion of federated learning.
With our method, we found that we were able to uphold the overall
accuracy of our image classification model while simultaneously
reducing the success of the backdoor. While our test environment is
not an ideal representation of the variety of real time scenarios that
federated learning defenses can be applied, our results provide a
clear path for the introduction of trusted users during client model
aggregation.
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