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ABSTRACT
According to the World Health Organization (WHO), 15 mil-
lion people around the world become victims of a stroke
every year. Of those 15 million people, 5 million succumb
to the disease and another 5 million who survive become
permanently disabled. Though it may not be common for
those under the age of 40, anyone can become susceptible to
a stroke, as factors such as high blood pressure can play a
major role increasing one’s risk. It is crucial to identify such
symptoms to discover patterns within a patient thatmay lead
to a stroke. In this paper, we utilize five different graph clus-
tering techniques to analyze patient data in order to evaluate
and find the most effective and accurate method of detect-
ing a stroke. Patient data from both stroke and non-stroke
patients are used to identify phenotypes, which then form
clusters to uncover overlapping patterns in the symptoms.
Finally, we conclude our discussion with our final thoughts
to the study and other methods that could be evaluated in
the future.

CCS CONCEPTS
• Computer systems organization → Embedded systems; Re-
dundancy; Robotics; • Networks→ Network reliability.
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1 INTRODUCTION
A cerebrovascular accident, most commonly known as a stroke, is
one of the most fatal brain diseases worldwide. It functions in a
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similar fashion as a heart attack, except for the primary location of
its function-the brain. The most common type, an ischemic stroke
is triggered due to the lack of blood flow to the brain, cutting off
the precious oxygen and nutrients needed to function. The less
common, however more catastrophic type of stroke is called a
hemorrhagic stroke, which occurs when the blood vessel in the
brain completely ruptures. The impact of the stroke may result
from many different reasons, most frequently from the buildup
of fatty deposits within the walls of the blood vessel, which then
continue to narrow over time until it is fully blocked or bursts.
According to the Center for Disease Control, about 1 in 6 deaths
from cardiovascular disease were solely due to strokes in 2021. [
https://www.cdc.gov/stroke/facts.htm]

The use of machine and deep learning techniques is no stranger
within the medical world. As such, using artificial intelligence to
assist medical professionals with the detection of diseases prior
to its arrival [https://link.springer.com/article/10.1007/s11227-020-
03481-x] is a widely known and exploited concept. Dependent on
the information being fed into the model, it can prove to produce
ground-breaking predictions that could potentially save the lives
of millions who may or may not be aware to their susceptibility to
a disease.

In this paper, we present our findings based on our attempt to
discover the most accurate and efficient method of detecting stroke.
We offer the following contributions:

• We begin by normalizing based on medications, lab work,
and diagnosis’, which are then compared directly to the
demographics pool. After the data has been analyzed, we
split our data into a training data set and a testing data set,
to create graphs.

• In addition to our initial weight of 6 months, within these
graphs, we have also added nodes and edges are being pro-
duced with varying weights from 1 month, 3 months, and 1
year.

• We then apply Node2Vec to each time frame and applied a
silhouette score analysis to ultimately rehabilitate the data
to form the patients’ graph cluster and centroids.

• Based on the clusters that are formed, we find an assemblage
of the phenotypes (nodes) vectors, which are then trans-
formed into a binary representation of that data. The binary
data representation is then fed into our chosen classifiers
and processed to be exhibited.

• Finally, we display our findings and draw our conclusions
from comparisons made from the given data. Additionally,
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we offer an ablation study and case study inwhichwe demon-
strate stroke patients’ graph clusters to offer insight into the
process.

2 RELATEDWORKS
Below, we offer relevant works pertaining to our topic of study,
including expanding upon the methods that will be utilized in
this paper. We will then ultimately draw comparisons between
each method to identify the most robust method of stroke disease
detection.

Disease Detection Models
As the field of machine learning continues to be evolve and

expand, as does its desire to be exploited. As mentioned, the use
of machine learning methods and ai is not new with respects to
its application in disease detection. Some [] may even have the
potential for success, such as this study that was able to forecast
patient symptoms to find possible underlying illnesses. This method
also uses demographic information with conclusions drawn from
patterns seen in their medical data. However, this [repeat cite]
provides the added bonus of extending past stroke prediction to
other life-threatening illnesses. There is also the consideration of
unique life-style factors that each patient experiences through their
lives. [https://link.springer.com/article/10.1007/s11227-020-03481-
x] There is the added complexity of understand that each person
has their own unique experience, whether in regards to impacts
on illnesses or external factors from their environment. Each of
those patients process it differently, especially when it pertains to
a current timeline which is always frequently evolving. This leaves
the room for critique on such methods and how they are able to
keep up with, and how well they can correctly identify a possible
disease.

Additional Clustering-based Methods There is also the integration
of more up-to-date methods, such as [] XGBoost, a classifier that is
younger in comparison to random forest. Random forest was heavily
employed within this study, and given for any future improvements
or expansions upon this topic, other classifiers like XGBoost can of-
fer possible improvements when continuing this experiment. In fact,
there has been recent data showing the use of methods such as XG-
Boost [https://onlinelibrary.wiley.com/doi/epdf/10.4218/etrij.2022-
0271] for stroke prediction as a fairly decent prediction method,
along with Naive Bayes, Decision Tree, Lightgbm, and Cat Boost.

3 PROPOSED METHOD
In this section, we begin our discussion over our proposed method-
ology. We expand upon our framework and how our data collection
procedure and its contribution into the construction of the overall
graphs.

3.1 Notations
Let our graph𝐺 = (𝑉 , 𝐸) be defined by a set of nodes𝑉 = (𝑣1, . . . , 𝑣𝑛),
|𝑉 | = 𝑛, and edges 𝐸 ⊆ 𝑉 ×𝑉 , |𝐸 | =𝑚:

Node2Vec [https://arxiv.org/pdf/1607.00653.pdf] Node2Vec has
the potential to express the diversity of howpatterns that are formed
within the data connect in a meaningful fashion to one another
[https://arxiv.org/pdf/1607.00653.pdf]. This method was inintally

introduced in 2016 by A. Grover and J. Leskovec and possess short,
yet in consequential scope.

The first step is implemented through the use of generating Ran-
dom Walks to explore the entirety of the graph. For each node v in
V, Node2Vec generates multiple random walks of a specified length.
The walks are generated by transitioning between nodes based on
predefined transition probabilities, which are designed to balance
between exploring local neighborhoods and exploring distant parts
of the graph. The transition probabilities are controlled by two
parameters: p and q. The parameter p encourages the random walk
to revisit nodes it has previously visited, while q encourages the
random walk to explore uncharted territory.

The second and final step involves learning node embeddings
through the use of Skip-Gram Models. The main idea is idea is to
predict context (neighboring) nodes given a target node. Each node
is represented as a one-hot encoded vector in the input layer. The
skip-gram model is trained using stochastic gradient descent to
maximize the likelihood of predicting context nodes for each target
node. The optimization process adjusts the node embeddings in a
way that similar nodes have similar embeddings. The optimization
of node embeddings using skip-gram models effectively captures
the structural characteristics of the graph, such as node similarities
and relationships.

Silhouette Analysis
The silhouette score is a metric used to evaluate the quality

of clusters in unsupervised machine learning, such as clustering
algorithms like K-means. It measures how similar an object is to its
own cluster (cohesion) compared to other clusters (separation). The
silhouette score for a data point is calculated using the formula:

𝑠 =
𝑏 − 𝑎

max(𝑎, 𝑏)

Where a is the average distance between the data point and all
other data points in the same cluster and b is the smallest average
distance between the data point and any other cluster. The silhou-
ette score ranges from -1 to +1, with a higher score indicating better
cluster quality.

ROC Curve Receiver Operating Characteristic (ROC) Curves,
has been widely used in medical data, especially within the area
of radiology. It has proven to show promising results when used
in the comparison of different data processing methods, and es-
pecially for prediction purposes [cite]. Specifically, in this study,
we will be using ROC curves to assess and compare the overall
performance of our chosen classifiers to see how accurately is can
determine the risk of a disease arising. To fully understand the
application of ROC curves to one’s data, we must take into consid-
eration some of its elements and how it affects the overall results
[https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8831439/]. The
necessary features to achieving the best ROC curve is through the
analysis of the sensitivity, specificity, false positives, and false neg-
ative aspects of the data. Below, we define our True Positive Rate
and our False Positive Rate:

True Positive Rate (TPR):

𝑇𝑃𝑅 =
True Positives

True Positives + False Negatives
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Figure 1: Pipeline explanation

False Positive Rate (FPR):

𝐹𝑃𝑅 =
False Positives

False Positives + True Negatives

3.2 Pre-processing data
Our model takes patient diagnoses, medications, and lab results as
its inputs. This data is then normalized to consider only patients that
are defined as stroke or non-stroke patients. We split the patients
into training and testing sets and generate graph representations
for all patients.

Nodes are defined as the diagnosis, medication, or lab results.
Edges are formed when two nodes co-occur within six months and
the edge weights are determined by the number of co-occurrences
within six months. For each stroke patient in the training dataset,
we generate node embeddings using Node2Vec and identify clusters
and centroids using K-means.

The optimal number of clusters for each patient is determined us-
ing the silhouette score. We identify overlapping centroids between
stroke patients and use the nodes within these clusters to gener-
ate a phenotype vector to generate the foundation of the vector
representation for each patient.

We then use both training and test data to generate vector repre-
sentation for each patient. If a patient has the signature phenotype
it is classified as 1, otherwise it is classified as 0. For the baseline
model, we do not perform graph clustering and generate the vec-
tor representation foundation using all phenotypes present in the
training data. The same method as above is used to form the binary
representation for all patients. Finally, we run random forest and

four other classification methods on the training data and then on
the testing data to evaluate the performance of the model.

4 EXPERIMENTAL SETTINGS

Table 1: Patient Cohort Demographics

Demographic Number
Gender
Male 116
Female 91
Race
White 175
Black 30
Asian 1

Unknown 1
Ethnicity

Hispanic/Latino 2
Non-Hispanic/Latino 205

Age
Minimum Age 46
Maximum Age 90
Average Age 70.31
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4.1 Data set
For our experiment, we used a proprietary dataset obtained from
the Indiana University Medical Hospital. It contains 208 patient’s
demographic information and diagnosis, medication, and lab results
data for several hundred patients. Each diagnosis, medication, and
lab results was associated with a date. Out of the 208 patients, 92 are
considered stroke patients. Any patient with a stroke diagnosis code,
a Transient ischemic attack (TIA), stroke, or Amaurosis, or doctor
notes was considered a stroke patient. To generate our patient
graph representations, we removed all patients from the diagnosis,
medication, and lab result data sits that were not part of the 208
patients in the demographic dataset.

4.2 Baselines and Parameter settings
We compare the performance of 5 machine learning classification
models for a vector representation generated with and without
graph clustering methods:

(1) Random Forest: 100 forest trees, a minimum sample split
of 2, and no maximum depth

(2) k-Nearest Neighbors: k = 21, uniform weight, and leaf size
of 30

(3) Support Vector Classification (SVP): regularization pa-
rameter or 1.0, an RBF kernel, and a degree of 3

(4) Multilayer Perceptron (MLP): hidden layer size of (100,
50) and 1000 max iterations

(5) Logistic Regression: l2 penalty, primal formulation, and a
stopping tolerance of 0.0001

5 EXPERIMENTAL RESULTS
5.1 Performance and Comparison
View table 1 for comparison results

Our approach utilizing graph-based clustering to construct pa-
tient vectors demonstrated marked enhancements in classification
accuracy compared to a baseline approach. The graph clustering
technique allowed us to create vector representations that captured
intricate medical attribute relationships, resulting in improved ac-
curacy.

Comparing our approach with the baseline, where patient vec-
tors were constructedwithout graph clustering, significant accuracy
improvements were observed across most classification methods.
Methods such as Random Forest, Multi-Layer Perceptron (MLP), Lin-
ear Regression, and k-Nearest Neighbors (k-NN) exhibited notably
increased accuracy with our graph-based approach. This suggests
that shared phenotypic clusters in patient vectors better captured
predictive patterns.

Interestingly, the Support Vector Machine (SVM) method main-
tained consistent accuracy levels with both approaches. This finding
underscores SVM’s resilience to noise and outliers.

Our study highlights the utility of phenotypic clustering in con-
structing patient vectors. Enhanced accuracy indicates the impor-
tance of incorporating shared phenotypic clusters for more accu-
rate stroke prediction, offering potential for improved personalized
treatments and outcomes.

5.2 Case Study

Figure 2: 79 year old White male stroke patient #6612850

For our first case study we use the patient with a MRN of 66125850
from our dataset. This patient is a 79 year-old White male who
has developed stroke. This patient has two phenotype clusters. The
centroids of these clusters are Antihypertensive medication and
an ICD-10 diagnosis code of I10 which represents essential hyper-
tension. Hypertension, commonly known as high blood pressure
is known to be a main risk factor for stroke. The relationship be-
tween hypertension and stroke is multifaceted, involving various
physiological mechanisms that contribute to the increased risk of
cerebrovascular events.

Figure 3: 76 year old White female stroke patient #38130820

We will now look at the patient with MRN of 38130820. This
patient is a 76 year-old White female who has developed stroke.
This patient has three phenotype clusters. The centroids of these
clusters are a lab test of high high uric acid, an ICD-10 diagnosis
code of D64, which represents anemia, and endocrine and metabolic
agent medication. The connection between anemia and increased
stroke risk lies in the disruption of normal blood flow dynamics, the
potential for thrombus formation, and the resulting tissue oxygen
deprivation.

5.3 Ablation study
We conducted an ablation study to explore how different time
frames influence our proposed graph-based clustering approach’s
accuracy. The study involved varying the temporal window for
creating edges between medical attributes in patient graphs. We
explored 1-month, 3-month, and 1-year time frames to understand
their impact on predicting developed stroke.
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Table 2: Model Performance Comparison

Model Type AUC (Baseline) AUC (Clustering)

Random Forest 0.82 0.85
k-NN 0.72 0.77
SVC 0.81 0.81
MLP 0.71 0.74

Logistic Regression 0.79 0.80

For each time frame, we adjusted the edge creation process
while keeping other methodology aspects constant. The baseline
approach used a 6-month window, while the 1-month, 3-month,
and 1-year settings considered relevant medical attributes within
those time frames.

The Random Forest classification consistently demonstrated the
highest accuracy. Interestingly, we observed that the 3-month time
frame increased accuracy, while the 1-month frame decreased it
compared to the 6-month baseline. The most significant improve-
ment occurred with a 1-year time frame. This outcome underscores
the importance of temporal granularity in capturing stroke-related
patterns. The enhanced accuracy with a 1-year frame suggests sta-
ble phenotypic relationships over longer periods, emphasizing the
value of extended temporal context in constructing patient graphs.
This success highlights the significance of considering long-term
medical trends for stroke prediction. However, it’s crucial to ac-
knowledge that the optimal time frame may vary across diseases
and datasets. Future studies should explore temporal resolutions
for other medical conditions to validate the generalizability of our
findings.

5.4 Traditional Feature Selection
To refine the accuracy of our baseline approach, we introduced
traditional feature selection techniques, specifically leveraging the
chi-squared test. Our aim was to enhance the stroke prediction
model by identifying the most pertinent medical attributes.

The feature selection process was specifically applied to the
baseline model, ensuring the integrity of our novel graph-based
clustering methodology. Just before employing the Random Forest
classifier, we independently conducted feature selection on both
training (X_train) and testing (X_test) datasets to safeguard model
generalization.

The chi-squared test, assessing the independence between cat-
egorical variables, guided our selection process. We gauged each
phenotype’s association with the target variable (stroke or non-
stroke). Elevated chi-squared values denoted stronger associations,
implying a phenotype’s potential as a stroke predictor.

Selecting phenotypeswith the highest chi-squared scores—indicative
of robust stroke associations—we curated a subset. This selection,
performed separately for training and testing data, averted data
leakage and maintained fairness in evaluation.

Employing the chi-squared test-based feature selection and con-
sequent vector reduction, we witnessed significant enhancement

in the baseline model’s performance. This streamlined model, com-
prising relevant phenotypes, surpassed the original baseline en-
compassing all attributes. This approach showcased the potential
of targeted phenotypic focus to elevate model discernment.

6 LIMITATIONS AND FUTUREWORK
Our study, while contributing valuable insights, is not without lim-
itations. Firstly, the study cohort is predominantly composed of
individuals from a specific racial background, potentially limiting
the ability to generalize our findings. Moreover, the absence of
certain data types, such as genetic information and socioeconomic
factors, may hinder a comprehensive understanding of disease risk
factors. Additionally, the temporal resolution explored in our abla-
tion study offers a limited snapshot of potential disease progression
patterns.

Looking ahead, future research could address these limitations
and propel the field forward. Exploring advanced graph-based tech-
niques like Graph Neural Networks (GNNs) could unlock complex
relationships within patient graphs, potentially enhancing the ac-
curacy of our disease prediction model. Furthermore, incorporating
patient demographics, including race, gender, age, and ethnicity,
could provide a more nuanced view of disease risk and ensure
fairness in predictive outcomes. Additional considerations to the
patient’s living environment, along with potential diaspora, there
is the possibility of providing more insight of how their socioeco-
nomic background can come into play. Enriching the dataset by
integrating patient family medical history and individual medical
history would provide a more holistic perspective on disease pre-
disposition, enabling a more comprehensive predictive framework.

7 CONCLUSION
In conclusion, our study introduces a novel approach to disease
prediction using graph clustering techniques, demonstrating its po-
tential in identifying shared phenotype clusters among developed
stroke patients. The integration of patient diagnosis, medication
history, and lab results within patient graphs sheds light on com-
plex relationships within medical data. Through graph embeddings
and clustering, our model showcases promising results for disease
prediction, outperforming traditional methods. The insights gained
from the ablation study emphasize the importance of temporal
granularity.

As we pave the way for future research, the integration of ad-
vanced techniques like GNNs, the consideration of patient demo-
graphics, and the inclusion of medical history emerges as para-
mount. These factors hold the promise of crafting a more com-
prehensive and accurate disease prediction framework, ensuring
equitable and personalized healthcare interventions.

Our commitment to enhancing medical data analysis remains
unwavering, with the goal of providing healthcare professionals
with powerful tools for improved disease prognosis and tailored
care.
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